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Abstract

This paper presents a dynamic model of firm financing where firms use financial

slack to reduce rent extraction by financiers possessing bargaining power. Financing is

lumpy because it is optimal to bargain infrequently. Moreover, firms typically finance

‘early’ before exhausting internal funds to bargain when their outside options are better.

Firms with better prospects maintain greater financial slack. Firms with good financing

alternatives always keep funds that exceed investment needs, whereas firms lacking such

alternatives delay financing until funds are depleted – and occasionally forgo investment

– to avoid paying excessive rents. Investment irreversibility magnifies financing rents

for unproductive firms.
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1 Introduction

Slack is a pervasive feature of firm financing. Firms generally – and even large, es-

tablished and creditworthy ones – preserve funds internally instead of fully deploying

them productively such as for investment or distributing them to financial stakeholders

such as in dividends.1 Prima facie, this constitutes both opportunity costs for firms,

because keeping funds yields lower returns than cost of funds, and macroeconomic in-

efficiency, because funds are not allocated to more financially constrained firms. Given

its ubiquity, it is important to understand the origin and nature of ‘financial’ slack.

The canonical framework on financial slack, dating to Baumol (1952) and Tobin

(1956) who posited fixed transaction costs, mainly focuses on frictions in liquidity.2

Accordingly, firms with great access to financing, such that financing is liquid, must

have little incentives to preserve funds, which is inconsistent with empirical evidence.

In this paper, I present a new theory of dynamic firm financing and financial slack

based on financier bargaining power. It explains two key aspects of financial slack:

first, firms raise financing infrequently and in a lumpy fashion; second, they typically

do so “early,” that is, well before running out of funds. Both features emerge in my

model as part of firms’ optimal financing strategy to reduce rents that financiers are

able to extract. The first feature of ‘lumpy financing’ microfounds fixed transaction

costs, and the second feature of ‘early financing’ fills the gap in the existing literature.

I consider an environment where a firm regularly needs financing, due to negative

shocks or investment needs. While it may maintain internal funds in anticipation, these

involve a carry cost. The firm can raise funds from external financiers at any point,

and there is no transaction cost of financing. It is thus feasible, and first-best, to hold

zero internal funds and raise external financing incrementally whenever needed.

The key element that gives rise to financial slack is a bargaining friction. A firm can

bargain with financiers at any point to raise funds, but while it is bargaining with one

financier, the firm cannot immediately locate another financier if the bargaining were

to fail. This assumption of financiers’ ‘local monopoly’ captures the idea that finding

alternative sources of financing can prove challenging in practice because financiers

are often rather specialized. For example, startups rely on venture capital funds that

have expertise for a specific industry and stage of the venture. Similarly, large and

established firms resort to a handful of investment banks that address these firms’

sizable funding needs with syndicated financing. In either case, it plausibly takes time

to switch to another financier in response to a failed financing from one financier.3

1‘Funds’ may refer only to cash reserves, but also include, more broadly, a remaining capacity
for borrowing at low interest rate, such as lines of credit or short-term debt.

2Baumol and Tobin (1989) note that Allais (1947) first proposed the same basic mechanism.
3For modeling, one may consider search/informational frictions arising upon failed bargaining.
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As a result, successful financing creates a positive surplus relative to a failure of

bargaining, and financiers extract a portion of the surplus as rents, thereby diluting

firm value ex-ante. In response, firms choose to raise financing in excess of immediate

funding needs, and maintain internal funds, in order to avoid needing to bargain with

financiers and incur dilution too frequently. Thus, financing is optimally lumpy.

Moreover, firms may choose to raise financing early, before exhausting internal

funds, in order to bargain when their outside options are better. That is, firms with

financial slack do not have their “back against the wall” because even if financing were

to fail, they could use these funds to cover losses internally, temporarily forestalling

business failure while pursuing alternative sources of financing. By bargaining with

financial slack, therefore, firms can reduce the surplus from financing at the present,

and hence the rents that financiers can extract from providing financing.

In sum, financial slack reduces dilution of firm value by improving firms’ bargaining

with financiers. Lumpy financing reduces the frequency of dilution, and early financing

reduces its size. This, I argue, is what determines the dynamics of firm financing.

For comparison, existing theories mostly assume illiquidity in firm financing as a

primitive from the environment: incremental financing with zero financial slack is not

first-best given fixed transaction costs and not feasible given search frictions. Therefore,

the framework neither (i) explains the seemingly puzzling empirical pattern of financial

slack, nor (ii) connects financial slack closely with the macro-finance literature focusing

on how firms’ financial frictions endogenously depend on macroeconomic variables.

In my theory, financial slack is an endogenous phenomenon of illiquidity, which

arises because, due to bargaining frictions, firms do not fully internalize the gains

from financing.4 This jointly rationalizes lumpy financing and early financing as firms’

optimal choice; in comparison, fixed transaction cost, in itself, does not explain early

financing, and search frictions explain both but due to infeasibility rather than optimal-

ity. In a sense, this paper microfounds liquidity frictions, but such that the frictions are

endogenous in firms’ optimal financing strategy and also structural parameters. This

yields testable implications, one being that firms with better future prospects have

more financial slack, consistent with empirical literature. It also endogenizes ‘variable’

transaction costs of financing and shows that in equilibrium, firms strategically choose

between financing costs that are proportional to either financing amount or firm value.

(i) The theory explains the puzzle of why large, established and creditworthy firms

with great access to financing may preserve seemingly excessive internal funds – even

beyond their investment needs. If bargaining with one financier were to fail, such firms

are able to quickly locate alternative financiers, but only if they have not already run

out of funds. As such, these firms can greatly improve their outside options vis-à-vis

4Supplemental Appendix SA.1 presents a comparison chart across models for financial slack.
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financiers by always keeping sizable internal funds through ‘early’ financing. In short,

when firms have great access to (alternative) financing, early financing is what allows

such firms to greatly reduce the size of dilution when raising funds from financiers.

(ii) This theory of firm financing also has immediate macroeconomic implications.

Concretely, underinvestment is a form of alternative self -financing. That is, firms that

can obtain extra funds by reducing investment or divesting capital stock to other firms

have better outside options, because if external financing were to fail, they can do so in

order to avoid running out of funds. While both divestment and reducing nonnegative

investment are, in this model, thus analytically equivalent means of improving firms’

outside options, they relate to two distinct macroeconomic concepts. Divestment leads

to the idea of investment irreversibility – difficulty of selling used capital to other firms

– while reducing investment is tied to individual firm productivity – because productive

firms invest more and so can reduce investment more if needed. In short, this paper

positions capital reallocation and firm productivity as two separate conduits of the

single underlying economic force – that firm financing involves bargaining.

Methodologically, the framework I propose is tractable, and allows general charac-

terization of optimal financial slack, including in environments with stochastic param-

eters (e.g., a stochastic discount factor) and investment. I model the key bargaining

friction – the time it takes to access alternative sources of financing – as a Poisson

process. This results in a tractable recursive structure between equilibrium value func-

tion and reservation value function which captures firms’ endogenous outside options.

Leveraging it, I summarize the unique Markov-perfect dynamic bargaining solution

with simple (s, S) bounds, characterize firms’ optimal choice on making financiers’

rents proportional to financing amount versus firm value, and obtain formal compara-

tive statics for optimal financial slack in parameters of the bargaining frictions.5

The rest of the paper is organized as follows. Section 2 describes related literature.

Section 3 presents the core mechanism with a stylized two-period model. Section 4

builds the main dynamic model in infinite time horizon, and Section 5 analyzes it.

Section 6 extends the framework with an investment choice. Section 7 concludes.

2 Related Literature

I. New framework of financial slack based on bargaining frictions. Conven-

tional views in economics on financial slack have mostly focused on frictions in liquid-

ity. As briefly discussed, one such vastly influential framework is the classic theory of

household money demand by Baumol (1952) and Tobin (1956). They posit illiquidity

5The numerical algorithm uses a standard linear solver to jointly determine both equilibrium
and reservation value functions, making numerical solutions easy to obtain for a general setup.
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in trading an asset (i.e., bank deposit) due to a fixed transaction cost. The theory has

been applied by Décamps, Mariotti, Rochet and Villeneuve (2011) and Bolton, Chen

and Wang (2011) to the firm context, generating lumpy and infrequent firm financing.

Bolton, Chen and Wang (2013) consider a stochastic fixed transaction cost, rational-

izing early financing with ‘market timing’ incentives. In contrast, this paper suggests

that firm financial slack may instead be the result of financier bargaining power.

In Hugonnier, Malamud and Morellec (2014), financial slack provides liquidity value

due to search frictions in finding a financier. My model, in comparison, is relevant for

firms that can easily access financing but have potentially limited alternatives, due to

reliance on specialized financiers such as venture capital funds or investment banks.

Empirically, this paper parsimoniously explains observed patterns of firm financial

slack. Albertus, Glover and Levine (2025) examine how multinational firms responded

to a change in U.S. tax codes that drastically eased repatriation of foreign earnings,

and conclude that existing theories cannot explain the reported high retention of funds

– even among well-governed and financially unconstrained samples – post treatment.

Similarly, Graham (2022) reports through a survey of corporate CFOs that firms,

small or large, regard financial flexibility as the single most important factor in capital

structure and investment decisions. In addition, this paper is consistent with studies

such as Opler, Pinkowitz, Stulz and Williamson (1999), Bates, Kahle and Stulz (2009),

Graham and Leary (2018) and Begenau and Palazzo (2021), which document that firms

with steep growth have large financial slack – specifically, cash-holdings.

II. Capital reallocation, productivity and financing. This paper’s framework,

without featuring secured debt, allows financing frictions to worsen when capital be-

comes difficult to divest. In doing so, it extends the overall insights from the vast

literature on borrowing constraints emphasizing the role of a resale price of capital –

including Kiyotaki and Moore (1997), Lorenzoni (2008), Rampini and Viswanathan

(2013), etc. – to general forms of firm financing, such as equity. The paper also high-

lights, consistent with Caggese (2007), Kurlat (2013), Lanteri (2018) and Cui (2022),

the role of firm productivity in how difficulty of divestment affects firms.

III. Endogenous timing of trades and endogenous dynamic outside options.

The seminal work by Rubinstein and Wolinsky (1985) extends the foundational bar-

gaining game of Rubinstein (1982) to endogenize agents’ outside options through search

frictions. In this framework, agents can trade only upon an exogenous match, and they

bargain over the surplus created by the match. Recently, McClellan (2024) endogenizes

the timing of a trade, when the agent’s outside option evolves exogenously.

Relative to the above literature, this paper builds a tractable framework that jointly

endogenizes timing of trades and dynamic evolution of outside options. In particular,

by modeling alternative trading opportunities as a Poisson arrival, it creates a tractable
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recursive structure between equilibrium value function and reservation value function,

enabling transparent analysis of marginal costs and benefits in choosing when to trade.

This paper relates to the literature on holdup such as Hart and Moore (1990).

Commonality is in the underlying incentives: a first-best choice may worsen an agent’s

subsequent bargaining position. The point of departure – other than the context – is

how dynamics is set up. In standard dynamic holdup models such as Che and Sákovics

(2004), an agent deals with a single counterparty over time; accordingly, dynamics tend

to mitigate the holdup problem. In contrast, firms in this paper deal with different

financiers at each financing, such that the frictions are preserved under dynamics.

IV. Complementing the literature on dynamic firm financing. This paper ex-

pands the literature on debt dilution. Myers (1977) shows that corporate debt overhang

dilutes equity value and suppresses profitable investment. More recently, Admati, De-

Marzo, Hellwig and Pfleiderer (2018) and DeMarzo and He (2021) study the ‘leverage

ratchet’ effect where deleveraging benefits senior debt at the cost to equity. In Don-

aldson, Koont, Piacentino and Vanasco (2024), unused credit lines serve as a threat of

debt dilution against new creditors, thus preventing dilution of existing creditors.

Bolton and Scharfstein (1996) as well as Hart and Moore (1998) study how the

ease of asset liquidation affects firms’ debt renegotiation strategy through default. The

present paper shows that the ease of asset liquidation may incentivize firms to simply

refinance early, instead of waiting until default to renegotiate debt contracts.

This paper broadly agrees with literature such as DeMarzo and Fishman (2007a,

2007b) and DeMarzo, Fishman, He and Wang (2012), but without entertaining agency

frictions. It also builds on the literature on risk management, such as Froot, Scharfstein

and Stein (1993), Rampini and Viswanathan (2010) and Mian and Santos (2018), by

rationalizing financial slack even in substantial excess of firms’ investment needs.

3 Core Mechanism

This section presents a stylized model that captures the core economic insights that due

to financiers’ bargaining power, firms may optimally raise financing infrequently and

hence in a lumpy fashion, and also early – that is, before internal funds are exhausted.

Setup. There are two periods with three dates t ∈ {0, 1, 2}. There is no discounting.

There is a project that lasts for the two periods. In each period, the project requires a

unit of input; with any less input, it fails. The project yields a payoff v > 2 on terminal

date t = 2. An agent called entrepreneur owns a firm that runs the project.

The firm cannot produce the input. There are two suppliers, one visiting the firm

on date 0 and the other on date 1, who can produce it at a constant marginal cost
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normalized to unity. Each of them has bargaining power and, if asked by the firm to

produce the input, extracts a fraction 1−θ, θ ∈ (0, 1), of the surplus from bargaining in

addition to being compensated for the cost of producing the input. A supplier cannot

bargain with the firm or produce the input except on the date of his visit. The input is

durable, but it requires a marginal carry cost φ > 0 to store the input for one period.6

Denote ht as the firm’s inventory holding of stored input on date t; ‘(financial)

slack’ is when ht is positive. By backward induction, the firm purchases from the

second supplier max{0, 1 − h1} units of the input on date 1. If h1 ≥ 1, then there is

no need to bargain with the second supplier. If h1 < 1, the project fails without more

input. The firm thus bargains with the second supplier and pays him the production

cost 1 − h1 plus his rent, which is a fraction 1 − θ of the surplus from bargaining

v− (1− h1). Due to the carry cost φ > 0, h1 ∈ {0, 1} in equilibrium as long as h0 ≤ 1.

Firm value on date 1 is, then, v if h1 = 1, and v − 1 − (1 − θ)(v − 1) = θ(v − 1) if

h1 = 0. Bargaining thus ‘dilutes’ firm value ex-ante: v̂ ≡ θ(v − 1) < v − 1 since θ < 1.

θ(v̂ − 1)
vs.

θ(v − 2− φ)

(h0 = 0)

v̂ ≡
θ(v − 1)

(h1 = 0)

v

(h1 = 1)

v

v

0 0

Bargain frequently

Bargain infrequently

Pro
duc

tion
cost

: 1

1 inpu
t us

ed

Ren
t: (

1− θ
)(v̂
− 1− 0)

Rent: (1− θ)(v − 2− φ− 0)

1 input usedProduction cost: 2

Carry cost: φ

Production cost: 1

1 input used

Rent: (1− θ)(v − 1− 0)

Skip bargaining

Rent: 0

1 input used

t = 0 t = 1 t = 2

Figure 1: Frequency of bargaining

Rectangles show firm value at each node. The firm’s input inventory on date t is ht. Dashed arrows represent
the firm’s outside options – i.e., what happens if bargaining fails. Firm values and rents are determined as:

Firm valuet = Firm valuet+1 − Costst︸ ︷︷ ︸
=Continuation valuet

−Rentt, Rentt = (1− θ)(Continuation valuet −Outside optiont︸ ︷︷ ︸
=Bargaining surplust

).

Frequency of bargaining and lumpy purchase. Suppose that the firm starts with

no input inventory h0 = 0. The entrepreneur chooses whether to bargain twice on both

dates t ∈ {0, 1} or just once on date t = 0. If she bargains frequently on both dates,

6This can represent either the entrepreneur’s utility cost or decay by a factor of φ
1+φ ∈ (0, 1).
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the entrepreneur purchases a unit of the input from the first supplier on date 0. No

input is stored into the next date h1 = 0, so that firm value on date 1 is diluted v̂ from

bargaining with the second supplier. If she instead bargains infrequently (that is, only

on date 0), she buys two units from the first supplier. One of them is used in the first

period, and the other is stored for the next period h1 = 1 at the carry cost φ. Since it

is unnecessary to bargain with the second supplier, firm value on date 1 is v.

Either way, the first supplier, when bargaining with the firm on date 0, extracts as

his rent a fraction 1 − θ of the difference between firm value on date 1 and the total

costs on date 0, which include production cost and, if applicable, carry cost.

The frequent bargaining maximizes total net project value v− 2 > v− 2−φ, since
the other choice involves a carry cost φ > 0. But the entrepreneur maximizes her own

payoff, which is diluted firm value on date 0. Figure 1 describes the comparison. She

optimally bargains infrequently if and only if θ(v − 2− φ) ≥ θ(v̂ − 1), or, equivalently,

(1− θ)(v − 1) ≥ φ; (1)

that is, if the rent that the second supplier would extract (1− θ)(v− 1) upon frequent

bargaining exceeds the carry cost φ upon infrequent bargaining.7

Even though the carry cost φ reduces total payoffs for all agents, the entrepreneur

may raise her payoff by bargaining infrequently; by avoiding the need to bargain with

the second supplier, she can appropriate his payoff for herself (and for the first supplier).

θ(v − 1)
vs.

v̂ + θ(v
−1− φ− v̂)

(h0 = 1)

v̂ ≡
θ(v − 1)

(h1 = 0)

v

(h1 = 1)

v

v

0

Bargain later

Bargain earlier

1 inpu
t us

ed

Skip
barg

aini
ng

Ren
t: 0

Rent: (1− θ)(v − 1− φ− v̂)
1 input usedProduction cost: 1

Carry cost: φ

Production cost: 1

1 input used

Rent: (1− θ)(v − 1− 0)

Skip bargaining

Rent: 0

1 input used

If bargaining fails,

use inventory now and

bargain again later

t = 0 t = 1 t = 2

Figure 2: Timing of bargaining

Timing of bargaining and outside options. Next, suppose instead that the firm

7The entrepreneur may also optimally abandon the project if θ(v− 1) ≤ 1 and v− 2−φ ≤ 0.
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initially has one unit of the input h0 = 1, so that it only needs to buy one unit for

the second period. The entrepreneur needs to bargain once in any case, but must now

choose when to bargain. If she bargains on date 1 with the second supplier, then her

payoff is v̂. Note that while bargaining with the second supplier, the entrepreneur is at

the brink of losing the project since there is no ‘slack’ h1 = 0. If instead she bargains

earlier on date 0 with the first supplier, she is no longer at the brink; even if bargaining

were to fail on date 0, the entrepreneur can use the inventory h0 = 1 now and bargain

later with the second supplier. Thus, the value of her outside option is v̂, instead of 0.

How does an improvement in the outside option affect the firm’s value? The firm

bargains with a supplier to split the continuation value from bargaining, which is

tomorrow’s firm value minus today’s production and carry costs. But the firm has

already secured the outside option value even if the bargaining were to fail. It is thus

only the remainder – ‘bargaining surplus’ – that actually gets split according to the

bargaining weights (θ, 1− θ) with the supplier. That is,

Firm valuet = Continuation valuet − Rentt

= Continuation valuet − (1− θ)
(
Continuation valuet −Outside optiont︸ ︷︷ ︸

=Bargaining surplust

)
= Outside optiont + θ

(
Continuation valuet −Outside optiont

)
.

Therefore, an increase in the firm’s outside option when it bargains earlier, if continu-

ation value is fixed, raises firm value by a fraction 1− θ. Of course, earlier bargaining

reduces continuation value due to carry cost φ, reducing firm value by a fraction θ.

As Figure 2 outlines, the entrepreneur optimally bargains earlier if and only if

v̂ + θ(v − 1− φ− v̂) ≥ θ(v − 1), or, equivalently,

(1− θ)v̂ ≥ θφ; (2)

i.e., gain from a better outside option (1− θ)v̂ outweighs her loss from carry cost θφ.

Lastly, suppose instead that if bargaining were to fail on date 0, the second supplier

cancels his visit on date 1; for example, failed bargaining is received as a negative signal.

Then, earlier bargaining does not improve the firm’s outside option value relative to

later bargaining – it is zero as the project fails. Since the left-hand side of Inequality

(2) is zero, earlier bargaining is never optimal, and hence there is never slack on date 1.

Discussion. Slack – that is, positive inventory – may endogenously emerge on date 1,

despite the carry cost, if it is optimal to bargain infrequently rather than frequently or

earlier rather than later. The entrepreneur bargains infrequently by purchasing enough

at a time to sustain multiple periods without needing to bargain and pay rents. She may
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also optimally purchase earlier to bargain when her outside options are better, which

requires that she has the ability to bargain again later even upon a failed bargaining.

One comparative statics that already obtains is that the conditions for slack –

Inequalities (1) and (2) – are easier to satisfy when terminal payoff v is larger. The

result is general. A supplier extracts a fraction 1− θ of bargaining surplus. When the

firm’s future value is higher, the surplus is, ceteris paribus, larger, and so is suppliers’

rent. The entrepreneur thus employs slack more to mitigate rent extraction.

These results arise because of bargaining frictions. Bargaining weight θ does not

affect the set of feasible allocations or the fact that zero slack is uniquely first-best, but

slack may still be optimal if θ < 1. There is both an underlying friction of suppliers’

local monopoly – in that the firm cannot immediately trade with another supplier if

trading with one supplier fails – and a ‘technology’ to overcome it – in that in each

period a supplier visits the firm.8 The firm unilaterally chooses when to trade, but

does not fully internalize the gains from a trade due to suppliers’ bargaining power

1− θ > 0. Therefore, its optimal choice of when to trade may fail to be first-best.

This stylized model thus captures the paper’s core insight that bargaining frictions

may make it optimal to bargain infrequently and early. Of course, the analysis lacks

actual dynamics: the initial inventory h0 ∈ {0, 1} should reflect the firm’s preceding

choice. Crucially, the choice to bargain ‘early’ should affect how ‘often’ to bargain.

Therefore, I transition to a formal setup to analyze full dynamics of optimal financing.

4 Model

This section sets up the main model of firm financing subject to bargaining frictions.

Environment. Time is continuous and infinite t ∈ [0,∞). All agents are risk neutral

and have a common time discount rate ρ > 0. Agents called insiders own a firm to run

a business. The business has an exogenous cash flow profile, given in Section 4.1. The

firm holds internal funds (or ‘funds’) ht ≥ 0 to which cash flow accrues. Internal funds

yield a return r < ρ.9 The spread φ ≡ ρ− r > 0 is the carry cost of internal funds.

Insiders may frictionlessly receive a nonnegative dividend. If internal funds are

depleted without immediate financing, the business fails with zero salvage value.10

Financing bargaining. To avoid business failure, the firm needs regular financing.

Insiders are assumed to be penniless and hence must raise funds for the firm from

8Supplemental Appendix SA.2 discusses setups where multiple suppliers visit each period.
9Internal funds can, via a simple reformulation of cash flow in Section 4.1, represent slack

against borrowing constraint in a risk-free instantaneous lending market with interest rate r < ρ.
10Positive salvage value can also be accounted for with a reformulation of cash flow in 4.1. In
addition, Sections 6.4 and 6.5 entertain richer liquidation technologies in context of divestment.
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homogeneous agents called financiers. Insiders can choose when to bargain à la Nash

with financiers for funds.11 Nash bargaining weights for insiders and financiers are

θ ∈ (0, 1) and 1 − θ, respectively. To abstract from financing history, financiers are

assumed to receive a proportional ownership stake in the firm in return.

To focus on the bargaining-driven dynamics of financing, I do not separate the

timing of bargaining from the timing of financing: at any t ≥ 0, financiers cannot

commit to a contract for future financing at t′ > t. For simplicity, I assume that

financiers are deep-pocketed but upon financing, they become penniless insiders.12

Outside options. If insiders can walk away from bargaining and immediately find

alternative financiers, bargaining is trivial because they can induce perfect competition

among financiers. I therefore assume financier local monopoly: if bargaining with one

group of financiers were to fail, it takes time for insiders to find another group of

financiers to bargain with and raise funds from. I call this time lag ‘exclusion,’ which

can be permanent or temporary. If permanent, excluded firm insiders continue the

business until funds are depleted, at which point the business fails. Generally, excluded

insiders are ‘re-included’ into the financing market at a Poisson arrival rate γ ≥ 0 that

parametrizes the accessibility of alternative financing. Insiders thus face a stochastic

time lag of finding another financing counterparty. Re-inclusion means regaining the

ability to finance, and insiders may choose not to promptly finance upon re-inclusion.

The setup can be interpreted as an environment where there is a search friction

but only off the equilibrium path. This is, arguably, rather plausible. Corporate

managers can forecast whether they will need funds soon and start engaging with

financial institutions in advance. At the same time, firms typically cannot engage with

multiple institutions separately to make them compete à la Bertrand. One may regard

the present assumption as a stylized version of a search friction where a match is both

durable until actual financing and exclusive.

4.1 Cash flow

The business has an exogenous cash flow profile. Consider two concrete examples:

1. The business is a ‘startup’ that incurs a constant flow expense κ dt with κ > 0,

until success arrives upon a stopping time τ at a Poisson rate λ > 0. Upon

success, the business earns a terminal payoff Π > κ
λ and ends.

2. The business is an ‘operating firm’ that earns a stochastic flow profit π dt+σ dBt

indefinitely, where π, σ > 0, and Bt is a standard Brownian motion.

11The framework à la Kalai (1977) gives identical results given deep-pocketed financiers.
12An alternative setup would be to assume that financiers can commit to funding the firm but
only up to a capacity constraint. This would require the model to take a stand on the capacity.
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Conceptually, Π in startups captures future value of business without affecting current

cash flow, whereas π in operating firms affects both future value and current cash flow.

Generally, time-t cash inflow is µ dt + σ dBt, where µ ∈ R, σ ≥ 0; for startups,

µ ≡ −κ < 0 and for operating firms, µ ≡ π > 0. The business may ‘succeed’ upon

a stopping time τ at a Poisson rate λ ≥ 0, upon which insiders receive a terminal

dividend Π + hτ , Π ∈ R.

Assumption 1. µ+ λΠ > 0. If σ = 0, then µ < 0 and either r ≤ 0 or µ+λΠ
ρ+λ < |µ|

r .

The first part gives a positive net present value of the business µ+λΠ
ρ+λ > 0 in the absence

of frictions. The second part ensures that external financing is regularly needed.13

4.2 Dividend payout and bargaining for financing

By linear preference, optimal Markov-perfect dividend policy is max
{
0, ht − h

}
above

a threshold h ≥ 0. Letting V (h) denote firm value given funds h, h solves V ′(h) = 1

by dividend optimality (i.e., smooth pasting) and 1
2σ

2V ′′(h) = 0 by super contact.

Suppose that at time t, firm insiders have chosen to bargain with financiers for

funds. Let Vo(h) denote insiders’ reservation value (‘outside option if bargaining fails’)

given funds h, and x ∈ [0, 1] their retained ownership. Nash bargaining solves

max
x∈[0,1], h≥0

(
xV (h)− Vo(ht)

)θ(
(1− x)V (h)− (h− ht)

)1−θ
=⇒ h ∈ argmax

h
V (h)− h ( =⇒ V ′(h) = 1), and

x(ht)V (h) = Vo(ht) + θ
(
V (h)− (h− ht)− Vo(ht)

)
(3)

The funding target h maximizes net firm value V − h.14 Ownership is split in a way

that insiders’ retained value from bargaining x(ht)V (h) given ht equals their reservation

value Vo(ht) plus a fraction θ of the bargaining surplus V (h)− (h− ht)− Vo(ht).
Insiders’ reservation value Vo(ht) does not, conditional on bargaining, affect net

firm value post financing V (h)− h, but it still affects insiders’ payoff from bargaining.

Thus, reservation value affects insiders’ optimal choice of when to bargain for financing.

Financing is optimal at ht = h if and only if firm value is given by the choice of

financing V (h) = x(h)V (h). The presence of θ < 1 in x(h)V (h) indicates that V is

diluted in anticipation of financiers’ rent extraction from optimally-timed financing.

13Even without volatility σ = 0, loss occurs with positive probability µ < 0 (i.e., certainty),
and fully covering losses with returns on internal funds ht ≥ |µ|/r is suboptimal.
14The funding target, taken as the infimum of the argmax, coincides with the dividend payout
threshold because both equalize marginal value of funds with marginal cost of financing. This
identity may fail given transaction costs of dividend payout, but this paper’s results are robust.
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5 Analysis

This section presents the analysis of the equilibrium – which is shown to exist uniquely.

Lemma 1 (Existence and uniqueness). There exist unique V and Vo, the equilibrium

value function of insiders and their reservation value function.

As an aside, the proof in Appendix A.1 leverages the two-step recursive structure:

(Markov-perfect) equilibrium value function V depends on itself because (i) V depends

on Vo through bargaining θ, and (ii) Vo depends on V through re-inclusion γ. The

expected discounting at rate ρ > 0 due to the time delay in re-inclusion γ <∞ makes

this recursion strictly contractionary. Accordingly, contraction mapping theorem is

invoked, establishing the existence of V as a unique fixed point. The second step of

the recursion then uniquely determines reservation value function Vo.
15

Sections 5.1 through 5.2 discuss lumpy financing and early financing. Section 5.3

analyzes how financial slack reduces dilution. Section 5.4 explores comparative statics.

5.1 Lumpy financing

Let h = inf{argmaxh V (h)− h}.16 Define B ⊂ [0, h] as the set of internal funds h at

which it is optimal in equilibrium to bargain with financiers for funds: h ∈ B if and

only if

V (h) = x(h)V (h) = Vo(h) + θ
(
V (h)− (h− h)− Vo(h)

)
. (4)

Obviously, 0 ∈ B, since θ > 0. Equation (4) gives an expression for financiers’ rents as

(1− θ)

[(
V (h)− (h− h)− V (h)

)
︸ ︷︷ ︸

≡J(h)

+
(
V (h)− Vo(h)

)
︸ ︷︷ ︸

≡E(h)

]
. (5)

Above, J(h) is the joint surplus from financing when insiders choose to enter into

bargaining with financiers, and E(h) is insiders’ loss due to exclusion: if bargaining

fails once they have entered into it, insiders get Vo(h) instead of V (h). Financiers

receive as their rents a fraction 1 − θ > 0 of not just J(h) but also E(h). Since

γ < ∞, exclusion always involves a nonzero loss, that is, E > 0 globally (which will

be shown shortly). Therefore, insiders cannot entirely eliminate financing rents even

when raising financing at h arbitrarily close to h. At the same time, h → h
−

implies

infinite financing frequency, that is, paying (1 − θ)(J(h) + E(h)) → (1 − θ)E(h) > 0

infinitely often. Incremental financing, therefore, is never optimal in continuous time.

15Supplemental Appendix SA.3 graphically illustrates the proof in Appendix A.1.
16When ht > h, the firm immediately pays out dividends ht−h to insiders. Thus, h 7→ V (h)−h
is constant above h, and therefore choosing the funding target h as the infimum is without loss.
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Note that financiers cannot extract rents if either θ = 1 or γ → ∞. It is obvious

from Equation (5) that θ = 1 eliminates financiers’ rents. Fix θ ∈ (0, 1) but let γ →∞
so that E(h) → 0 pointwise for h > 0. Note that for any γ < ∞, h → h gives

J(h) → J(h) = 0.17 Therefore, when γ → ∞, financiers’ rents (1 − θ)
(
J(h) + E(h)

)
vanish as financing occurs infinitely close to the funding target h. As expected (and

demonstrated shortly in Section 5.4), there is no financial slack in the absence of rent

extraction by financiers, that is, either θ = 1 or γ →∞.

To summarize, the present theory predicts ‘lumpy’ and infrequent financing, which

indicates the emergence of an endogenous financing friction, if and only if bargaining

is nontrivial. This feature is demonstrated by the first main result below and its proof.

Proposition 1. Financing is lumpy and intermittent, supB < h.

Proof. Suppose not, that is, for any sufficiently small ε > 0, financing at h = h− ε in

the amount ε is optimal. By Equation (4),

V (h− ε) = x(h− ε)V (h) = θ
(
V (h)− ε

)
+ (1− θ)Vo(h− ε).

Letting ε→ 0+ gives V (h) = θV (h) + (1− θ)Vo(h) by continuity (see Appendix A.1).

Since θ < 1, this is equivalent to V (h) = Vo(h). But by Assumption 1, there is a finite

time interval over which, without financing, internal funds h get depleted with nonzero

probability. Also, over any finite time interval, re-inclusion fails to occur with nonzero

probability since γ < ∞. In sum, there is nonzero probability that today’s exclusion

causes business failure within a finite time interval. Without exclusion, positive surplus

is retained at depletion since θ > 0. Hence, V (h) > Vo(h), a contradiction.

5.2 Early financing

Next, let us analyze insiders’ financing strategy B ⊃ {0}. The following lemma es-

tablishes that it is an interval from zero: that is, the optimal financing strategy is

monotone in internal funds h. While this is a technical result, I include a partial proof

in the article because its derivation points at the core of the economic mechanism.

Lemma 2 (Monotone financing strategy). If h ∈ B, then [0, h] ⊂ B.

Proof. Suppose B \ {0} is nonempty. Immediate financing is optimal on this set, and

hence is preferred to an instantaneously delayed financing: for h ∈ B \ {0},

ρV (h)− rhV ′(h) ≥ H(V )(h), (6)

17It is easily shown that as γ →∞, J(h)→ 0 for h > 0 conditional on financing being optimal.
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where

H(V )(h) ≡ µV ′(h) +
1

2
σ2V ′′(h) + λ

(
Π+ h− V (h)

)
(7)

is the infinitesimal generator for the exogenous cash flow in Section 4.1. Note that

ρV (h)− rh = H(V )(h) and (8)

ρVo(h)− rhV ′
o(h) = H(Vo)(h) + γ

(
V (h)− Vo(h)

)
, (9)

where V ′(h) = 1. The HJB under exclusion (9) has a term for re-inclusion at rate γ.

Equation (4), being an identity on B, implies that V ′(h) = θ + (1 − θ)V ′
o(h) and

V ′′(h) = (1−θ)V ′′
o (h) on B, with a potential exception at h = 0. Thus, for h ∈ B \{0},

H(V )(h) = θH(V )(h) + (1− θ)H(Vo)(h). (10)

Substituting (4), (8), (9), (10) into (6) cancels out H(V )(h) and gives: for h ∈ B \ {0},

(1− θ)γ
(
V (h)− Vo(h)

)
≥ θφ

(
h− h

)
. (11)

This inequality is single-crossing so that h ∈ B implies [0, h] ⊂ B. Showing the single-

crossing property requires a technical proof for concavity of Vo; see Appendix A.2.

Suppose that financing is optimal at ht = h > 0. This implies that when insiders

compare bargaining earlier now against delaying bargaining by an instant dt as a one-

shot deviation, they prefer the former. In this comparison, the risk of running out of

funds due to the dt delay is negligible because ht > 0. Also, exogenous cash inflow

during the instant (t, t+ dt], represented by H(V )(h) in the proof above, simply shifts

continuation value V (h)−(h−ht) and insiders’ reservation value Vo(ht) in parallel, and

so does not affect the surplus from bargaining (which is the difference) – and hence,

financiers’ rents. The cancellation of H(V )(h) in the proof reflects this invariance.18

Earlier financing creates two material changes compared to instantaneous delay. On

one hand, there is an additional carry cost, because funds h−ht come in at t instead of

t+dt. This reduces continuation value from bargaining V (h)−(h−ht) by φ(h−ht) dt.
Due to bargaining (4), insiders do not fully internalize this loss since financiers bear a

fraction 1 − θ as a reduction in their rents. This is the right-hand side of Inequality

(11). On the other hand, insiders’ outside options are better when they finance earlier,

because of the chance of instantaneously finding alternative financiers during (t, t+dt].

Put differently, financiers at t face competition from alternative financiers over (t, t+dt]

up to probability γ dt, which is irrelevant for financiers at t+dt. Earlier financing thus

raises insiders’ reservation value Vo(ht) by γ(V (ht)−Vo(ht)) dt. Again due to bargaining

18The axiom of invariance to positive affine transformation, formalized by Nash (1950), holds.
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(4), firm value rises by a fraction 1− θ since financiers’ rents are reduced by as much,

giving the left-hand side of Inequality (11).19

Lemma 2 allows the equilibrium to be fully characterized by ‘(s, S)’ bounds (h, h),

where h ≡ supB. When lims→t− hs = h, insiders raise financing in the amount ∆h ≡
h − h > 0 so that ht = h. Henceforth, I refer to h both as ‘financing threshold’ – to

address the dynamics of financing – and ‘funding reserve’ – to focus on the amount of

financial slack when financing is raised. I say that insiders engage in ‘early financing’

if h > 0, that is, if insiders raise financing before running out of funds. I also refer to

h and ∆h as ‘funding target’ and ‘financing amount,’ respectively.

Corollary 1 (Monotonicity of early financing). Given the other parameters, there

exists γ ∈ (0,∞) such that early financing is optimal h > 0 if and only if γ > γ.

Corollary 1 formalizes the logical implication from the discussion of Lemma 2 that

the only reason that insiders would choose to finance early, h > 0, is that if financing

were to fail, off the equilibrium path, insiders could use this funding reserve to cover

losses while seeking alternative sources of financing to prevent business failure. When

this is sufficiently difficult, γ ≤ γ, insiders delay financing until funds are depleted,

because they cannot sufficiently improve their outside options by financing early.

5.3 Financial slack and dilution

I now analyze how financial slack reduces dilution. For illustration, consider a startup

that incurs a fixed expense κ dt until success at Poisson rate λ with a terminal payoff Π.

Baseline parameters are: (ρ, r) = (0.05, 0), (θ, γ) = (0.5, 1) and (κ, λ,Π) = (2, 0.1, 50).

Size-frequency tradeoff. Figure 3 illustrates the relationship between financial slack

and dilution. In the main plot that shows optimal financing strategy, insiders raise

financing once every ∆h
κ ≈ 1.8 periods (until success) and ‘very early’ with a large

funding reserve h ≈ 9.1. At each financing, insiders incur small dilution: 0.18 in value.

If this cost were ‘fixed,’ the strategy that the main plot illustrates would be strictly

dominated by further delaying financing with lower thresholds h̃ < h, as the cost would

be less frequently incurred. The bottom two subplots, Figures 3a and 3b, show that

these deviations are indeed not optimal. Although frequency decreases, the size of

dilution endogenously magnifies, to 1.5 with h̃ = 0.5h and even up to 7.88 with h̃ = 0.

Why is dilution magnified when insiders raise financing with smaller financial slack?

The answer lies in insiders’ outside options. In Figure 4, I decompose valuation on the

vertical axis, assuming a one-shot strategy of immediate financing at each h across

19Inequality (11) coincides with Inequality (2) in the stylized model of Section 3, with one
innocuous generalization: if bargaining fails on t = 0, the second supplier cancels his visit with
probability 1− γ, γ ∈ [0, 1]. Earlier bargaining raises the firm’s reservation value by γ

(
v̂ − 0

)
.
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(a) Halved funding reserve h̃ = 0.5h (b) Finance only at depletion h̃ = 0

Figure 3: Financial slack and dilution

The plots describe a startup with parameters (ρ, r) = (0.05, 0), (θ, γ) = (0.5, 1), (κ, λ,Π) = (2, 0.1, 50). The
graphs in solid black tracks the history of internal funds ht until the business succeeds – at t = 10 in this
simulation. Each financing, which is when ht jumps from financing threshold h to funding target h, involves
dilution given in magenta bar. The bottom two subplots depict suboptimally lower financing thresholds.

[0, h] on the horizontal axis. The rightmost edge in blue is the funding target h, and

the red vertical line the financing threshold h.20

The solid black line at the top of Figure 4 is firm value upon financing V (h). To

attain this ‘post-money’ value, financiers must provide financing h− h, represented as

the height of the light gray area right below it; this amount decreases in h at a unit

slope. Financing surplus, however, is not simply the difference between post-money

value V (h) and ‘money’ h − h. Insiders possess outside options Vo(h) at bargaining,

represented as the height of the dark gray area. Even if financing were to fail, insiders

that have kept financial slack may still seek alternative funding sources γ = 1 to prevent

business failure. But if financing were to fail without financial slack, the business would

promptly fail. As such, value of insiders’ outside options rises steeply in financial slack.

Therefore, the financing surplus, which is the two colored areas in the middle,

decreases in financial slack. This is what gets divided, according to the ratio (1−θ : θ),
into financiers’ rents in magenta and insiders’ surplus retention in light blue.

In short, financial slack monotonically reduces the size of dilution. But then, why

20As can be inferred, immediate financing being considered is, on (h, h], a (one-shot) deviation.
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Figure 4: Financial slack, outside options, and the size of dilution

This plot addresses the same startup example as in Figure 3. It shows value decomposition when insiders
with funds h ∈ [0, h] choose to raise financing – suboptimally on (h, h]. Continuation value from bargaining is
V (h)− (h− h), which is the height of the bottom of the light gray area, and outside option value is the height
of the dark gray area. The surplus from financing is in between the two, which is split, by ratio (1− θ : θ), to
financiers’ rents in magenta and insiders’ retained surplus in light blue.

is the optimal funding reserve h not even higher? The answer is the frequency. Given

funding target h, a higher financing threshold h decreases financing amount ∆h and

thus increases the frequency of dilution, while its size no longer decreases as steeply.21

Access to financing. When is early financing not optimal? As Corollary 1 shows, it

is not optimal when insiders do not have good access to alternative financing γ ≤ γ.

Then, financial slack does not improve insiders’ outside options enough to justify the

increases in carry cost and financing frequency.

Figure 5: Poor access to alternative financing γ = 0

The height of the plot is adjusted so that slopes are visually comparable to those in Figure 4.

21There is a gap even at the top V (h)−Vo(h) > 0, which is a mere 0.022 but certainly nonzero.
As Proposition 1 shows, this non-vanishing loss from exclusion induces lumpy financing.
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Figure 5 illustrates such an instance with γ = 0 for an otherwise identical startup.

Financial slack increases insiders’ outside options at a much lower slope, since there is

no chance of re-inclusion γ = 0.22 Consequently, the size of dilution is never reduced

by financial slack enough to compensate for the increased frequency of dilution. These

insiders instead delay financing until funds are depleted and, when they do raise funds,

raise a much larger amount ∆h ≈ 18.27 > 3.64 to reduce the frequency of dilution.

Then, what does the optimality of early financing imply about dilution?

Proposition 2 (Early financing and dilution). In equilibrium, financiers extract rents

from insiders through financing in the amount of: (1− θ)
(
V (h)− h

)
if insiders delay

financing until funds are depleted h = 0; and

φ

γ
∆h (12)

if insiders finance with financial slack h > 0. Financing is early h > 0 if and only if

(1− θ)γ > φh

V (h)− h
. (13)

Proof. Financiers’ rent when h = 0 is from (3). For (13), evaluate (11) at h = 0. For

(12), enforce equality on (11) at h = h > 0 given (1 − θ)
(
V (h) − Vo(h)

)
= θ

(
V (h) −

V (h)−∆h
)
from (4): V (h)− V (h)−∆h = (1− x)V (h)−∆h is financiers’ rent.

Proposition 2 gives a compact and explicit expression (12) capturing the dynamic

tradeoff between the size and frequency of dilution. From the discussion of Lemma 2,

earlier financing at ht > 0 reduces financiers’ rents by the amount (1 − θ)γ
(
V (ht) −

Vo(ht)
)
dt. If ht ≤ h, then V (ht) − Vo(ht) = x(ht)V (h) − Vo(ht) is insiders’ surplus

from financing at ht. Also, by a standard property of bargaining, Equation (3) implies

that θ : 1− θ equals the ratio of insiders’ surplus to financiers’ rents. Thus,

(1−θ)γ
(
V (ht)−Vo(ht)

)
= (1−θ)γ

(
x(ht)V (h)−Vo(ht)

)
= θγ

((
1−x(ht)

)
V (h)−

(
h−ht

))
.

In short, earlier financing, wherever on (0, h] it is optimal, reduces financiers’ rents by a

factor of θγ dt. On the other hand, it involves a carry cost of φ(h−ht) dt, but insiders
bear a fraction θ of it due to bargaining. Thus, θ cancels out from the comparison, and

the optimal interior financing threshold h > 0 equalizes marginal costs and benefits of

earlier financing by equalizing γ times the size of dilution to φ times financing amount

∆h, which reduces the frequency of dilution. This dynamic tradeoff between the size

and the frequency of dilution is compactly captured in the expression (12).

22The slope exceeds unity V ′
o(ht) > 1 only due to the chance of business success upon τ at

Poisson rate λ before funds are depleted: P
(
τ ≤ t + ht/κ | τ > t

)
. Since τ is independent of

success or failure of bargaining, it does not affect optimal timing of bargaining; see Section 5.2.
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Observe from (12) that the size of dilution given early financing is, in equilibrium,

proportional to financing amount. Even though there is no variable transaction cost

of financing, the size of dilution may resemble one in equilibrium. And this expression

holds pointwise: conditional on early financing, if parameters (ρ, r, θ, γ, µ, σ, λ,Π) ex-

ogenously fluctuate but with a constant ratio of carry cost of financial slack φ ≡ ρ− r
to availability of financing alternatives γ, then the firm is seen as though incurring a

constant marginal cost of financing.23 Inequality (13) in Proposition 2 thus shows that

firms strategically choose between financing costs that are proportional to either net

firm value V (h)− h or financing amount ∆h – via their choice on early financing.

5.4 Comparative statics of financial slack

The workhorse proof of Lemma 2 shows that the infinitesimal generator H(V ) for

exogenous cash flow in Section 4.1 is canceled on the financing interval B = [0, h] when

h > 0. Using this feature, I establish comparative statics in bargaining parameters.

For clarity, suppose r ≥ 0; a negative yield (very) slightly complicates exposition.

Proposition 3 (Comparative statics in θ and γ). The equilibrium (h, h) is invariant

to γ when γ ≤ γ. (i) Funding target h is decreasing in θ, and decreasing in γ when

γ ≥ γ.24 (ii) Financing threshold h is decreasing in θ when h > 0; h = 0 is constant

in θ above some θ < 1. (iii) Financing amount ∆h – in case h > 0 (i.e., ∆h < h)

– is constant (increasing) in θ given r = 0 (r > 0), and decreasing in γ given r = 0.

(iv) Financial slack vanishes h, h, ∆h→ 0 as either θ → 1 or γ → +∞.

First, an increase in either bargaining weight θ or access to alternative financing γ

(≥ γ) lowers insiders’ incentives to keep financial slack, and hence decreases funding

target h – down to zero in the limit along with h and ∆h. Second, funding reserve h

is decreasing in θ as well. As Proposition 2 shows, insiders reduce the size of dilution

by financing early h > 0. When θ is higher, financiers can extract a smaller fraction of

financing surplus as rents, and so insiders do not keep as large funding reserves.

Funding reserve h is, however, non-monotonic in access to alternative financing

γ. With γ above but near γ, insiders finance early to improve their outside options.

Alternative financiers are, however, not readily available, so that large financial slack

is necessary to make financiers with whom the insiders bargain compete against many

potential rivals. As alternative financing becomes increasingly accessible, a smaller and

smaller h is enough to make financiers compete against as many – or more – rivals.

23When parameters (ρ, r, θ, γ, µ, σ, λ,Π) exogenously fluctuate, financing strategy (h, h) also
fluctuates. Nevertheless, formal results presented so far, including Proposition 2, hold pointwise;
the proof of Proposition 5 in Appendix A.6 shows how such variation is accounted for.
24Within this proposition, ‘decreasing’/‘increasing’ indicates strict monotonicity only.
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Lastly, financing amount ∆h determines the frequency of financing, and hence of

dilution. Proposition 2 shows that given early financing, the size of dilution is φ
γ∆h,

which is constant in θ and decreasing in γ. Therefore, its optimal frequency, which is

decreasing in financing amount ∆h, is constant in θ and increasing in γ.25

Proposition 3 is significant in two regards. First, note that θ affects neither the

set of feasible allocations nor which of them is uniquely first-best, and yet gives first-

best allocation if and only if θ → 1. This shows that the core friction in the present

mechanism is not in liquidity: (i) there are both a latent friction γ <∞ and a costless

technology to overcome it, but (ii) the agent that controls when to exercise the tech-

nology does not fully internalize the gains from exercising it θ < 1. Due to this positive

externality, there is endogenous underprovision in frequency of financing transactions.

In short, illiquidity arises from this dynamic positive externality due to bargaining.26

Figure 6: Comparative statics in access to alternative financing γ

‘Operating firm’ given ρ = 0.05, r = 0, θ = 0.5, π ≡ µ = 1, σ = 2, λ = Π = 0. Financing rent is never zero.

Second, the non-monotonicity of financing threshold h in γ, as shown in Figure

6, differentiates this paper from existing theories. In such models, early financing

is rationalized through exogenous fluctuations in fixed transaction costs (e.g., Bolton

et al., 2013), search frictions (e.g., Hugonnier et al., 2014), or risk management in

anticipation of investment opportunities (e.g., Froot et al., 1993). Accordingly, firms

with superior and more reliable access to financing face less financing frictions, and thus

have smaller incentives to keep funding reserves. In relation, the present theory adds

a richer mechanism where the extent to which firms’ access to financing can mitigate

financing frictions depends on the amount of financial slack that firms optimally keep.

Under this framework, therefore, the seemingly excessive amount of financial slack

25If r > 0, a higher h, holding financing amount ∆h fixed, implies less frequent financing due

to higher yields rht dt on ht ∈ (h−∆h, h]; since ∂h
∂θ < 0, ∆h is thus increasing in θ when h > 0.

26If θ = 0, any allocation is an equilibrium since the agent that chooses when to trade (insiders)
is indifferent. Thus, the game is not upper-hemicontinuous as θ → 0. Still, gains from financing
are fully ‘externalized’ to another agent (financiers). Thus, there exists a first-best equilibrium
where the agent with choice adopts the best strategy for the other agent with benefit.
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often seen with large, established and creditworthy firms should not be a puzzle.27

6 Investment Extensions

As I now introduce capital investment, one question that might arise is ‘why consider

investment?’ A more precise question, though, would be ‘why consider investment

explicitly?’ It is because in the main model through Sections 4 and 5 as well as in

the stylized model in Section 3, investment has been implicitly assumed. This is less

implicit in case of the stylized model with a two-period project and also for the example

of a startup: both incur constant ‘losses’ – or fixed investment expenses – until future

payoff materializes. Investment is also there in the other example of an operating firm:

occasional losses need to be covered in order to keep earning profits in the future.

Nevertheless, introducing investment explicitly is integral in this paper’s overall

analysis, precisely because the frictions consist in bargaining. Specifically, investment,

when modeled explicitly, is firms’ direct control over flow of funds, and therefore, it

must jointly affect both firms’ outside options off the equilibrium path and the size of

dilution on the path. That is, firms that can obtain extra funds by reducing invest-

ment or divesting capital to other firms have good outside options vis-à-vis external

financiers; if external financing were to fail, such firms can do so in order to avoid run-

ning out of funds. From such firms, financiers can extract small rents in equilibrium.

In this paper, reducing nonnegative investment and divestment (i.e., negative in-

vestment) are thus analytically equivalent off-path responses to reduce on-path dilution.

But they are distinct, at least macroeconomically; as discussed at the introduction in

Section 1, divestment relates to investment irreversibility, and reducing investment is

tied to firm productivity. In short, this paper, by direct implications from its core mech-

anism, positions capital reallocation and firm productivity as two separate conduits of

the single underlying economic force – that firm financing involves bargaining.28

This section explores how firms’ optimal financing strategy shapes this rich interac-

tion between investment and dilution. For clarity of exposition, I continue addressing a

single firm in the backdrop of financiers, but, consistent with the above discussion, the

implications extend to macroeconomics. Section 6.1 uses a stylized lumpy investment

to illustrate (i) how access to alternative financing γ jointly affects firms’ financing

and investment policies, and (ii) how returns to investment affect the size of dilution.

Sections 6.2 through 6.5 offer formal analysis on how firms’ strategic underinvestment,

including divestment, interacts with dilution from external financing.

27In relation to the risk management literature, Section 6.1 shows that this paper’s model can
deliver funding reserves even in substantial excess of firms’ investment needs – see Figure 8.
28Supplemental Appendix SA.5 motivates the explicit modeling of investment differently, by
discussing how dilution interacts with a firm’s current cash flow as well as with its future payoff.
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6.1 Stylized lumpy investment

For the present stylized exercise, I slightly modify cash flow profile in 4.1.

Cash flow and investment opportunities. The business has ‘normalized’ cash

inflow π dt+ σ dBt, with π, σ > 0. Opportunities to scale up cash inflow to η
(
π dt+

σ dBt
)
, η > 1, arrive at a Poisson rate λ > 0, but it requires a normalized upfront

investment expense of ξ > 0. Firm value W (k, h) given k ∈ N ∪ {0} rounds of past

investment and funds h is homogeneous so that W (k, h) = ηkW
(
1, h

ηk

)
≡ ηkV

(
h
ηk

)
.

To ensure that investment is first-best, I assume the following.

Assumption 2. π > λξ and (η−1)π
ρ ≥ ξ.

Investment choice. Upon receiving an opportunity to invest, a firm with funds h can

(i) fund the investment internally, with value ηV
(
h−ξ
η

)
, (ii) forgo the investment, with

value V (h), or (iii) finance the investment externally, with value given by bargaining

as

V̂o(h) + θ
(
ηV (h)−

(
ξ + ηh− h

)
− V̂o(h)

)
,

where the firm’ reservation value is V̂o(h) ≡ max
{
Vo(h), ηVo

(
h−ξ
η

)}
:

- When V̂o(h) = Vo(h), the firm optimally forgoes investment if financing fails.

- When V̂o(h) = ηVo

(
h−ξ
η

)
, the firm optimally invests even if financing fails. I

term this ‘financing the investment with (credible) commitment to execution.’

The term ‘commitment’ is simply a shorthand for when, given that choice (iii) is

optimal, the optimality of investment itself does not depend on successful financing.29

Financing access. I study how access to alternative financing γ affects financial slack

and investment, given (ρ, r) = (0.07, 0), θ = 0.5, (π, σ) = (1, 2) and (λ, ξ) = (0.5, 0.7).

Let γ = 0.3. As Figure 7 illustrates, firms may sometimes forgo – as shown in black

square markers – investment opportunities that increase frictionless net present value.

For these firms, financing involves large rent extraction as their access to alternative

financing is not so good. Therefore, they optimally forgo investment when the lumpy

expense would greatly dilute firm value ex-ante by making the sizable rent extraction

by financiers much likelier to be triggered soon. When rent extraction has already

become highly likely soon due to low funds, however, firm value is already diluted

enough ex-ante so that it is optimal to increase diluted firm value by bargaining with

financiers over financing the investment.

Figure 8 illustrates optimal financing and investment policies as the strength of

financing access varies γ ∈ [0, 52]. The subplots describe γ ∈ {0, 26}. In Figure 8a

29By subgame perfection, this is equivalent to the firm first funding the investment internally
– per choice (i) – and then promptly raising financing – per Section 4.2.
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Figure 7: Optimal investment policy under dilution from financing

The black curve is a simulated history of normalized internal funds along the left axis. The horizontal lines
in blue and red are funding target h and financing threshold h, respectively. Investment opportunities arrive
at the vertical dashed lines, each requiring an upfront normalized expense ξ whose size is indicated on the left
axis. The markers in each shaded region indicate the choice made upon each opportunity in accordance with
investment policy described in the legend. The magenta bar is normalized financing rent: one at investment
financing (t ≈ 0.44), and one at non-investment financing (t ≈ 7.64). Access to alternative financing is γ = 0.3.

with γ = 0, firms face substantial dilution from financing because they cannot access

alternative financiers. As a result, they delay financing as much as possible and often

forgo investment in order to avoid large dilution from financing.

In contrast, Figure 8b describes a firm that can expect to find alternative financiers

very quickly γ = 26. It finances in small lumps ∆h ≈ 0.91 and thus extremely fre-

quently – 53 times over t ∈ [0, 10] in the present simulation – because of the extremely

negligible size of dilution around 0.004 at the financing threshold. Nevertheless, it

maintains a sizable funding reserve h ≈ 2.84. As discussed in Section 5, this financial

slack is what reduces dilution to such a negligible size.

‘Commitment’ to investment execution and the size of dilution. Moreover,

firms with such good access to financing γ = 26 always finance lumpy investments

despite keeping funding reserves h ≈ 2.84 in large excess of the expense ξ = 0.7. For

any ht ∈ [h, h], these firms are willing to invest even if financing fails: even at ht = h,

ηVo

(
h− ξ
η

)
≈ 23.228 > 22.102 ≈ Vo(h). (14)

This is because both γ and h are high. Because h ≈ 2.84 is high, firms can fund

the investment internally and still have a substantial amount of normalized remaining

funds h−ξ
η ≈ 1.95. Because γ is high, firms’ normalized reservation value falls only

slightly as a result Vo

(
h−ξ
η

)
≈ 21.116 < 22.102 ≈ Vo(h). Investment thus raises the

actual reservation value, as Inequality (14) shows.
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(a) Poor access to financing γ = 0 (b) Good access to financing γ = 26

Figure 8: Financing access and investment policy

In the main plot with comparative statics in γ, colored areas show optimal investment policy given funds h
per the legend. The semi-dashed line in magenta is the size of dilution from financing the investment given
the opportunity arrives when ht = h. The dilution graph kinks downward when ‘commitment’ starts to hold
– i.e., where the red curve enters the yellow region. For explanation of the subplots, see Figure 7.

This is how such firms incur negligible dilution even when financing the investment.

Even if financing were to fail, investment would still be optimally undertaken. Because

investment does not depend on financing, returns on investment do not constitute a

surplus from financing. Dilution thus becomes quite negligible (approximately 0.054),

because this credible ‘commitment’ reduces it by (1−θ)
(
ηVo

(
h−ξ
η

)
− Vo(h)

)
≈ 0.563.

6.2 Formal extended setup

For formal analysis, I use a standard investment model à la Hayashi (1982). Section

6.3 shows that underinvestment arises due to dilution, and Section 6.4 discusses how

strategic underinvestment, including divestment, affects dilution. Section 6.5 highlights

the role of productivity when divestment is difficult.

Production and investment. A firm owns capital Kt and employs it to produce

(
A dt+ σ dBt

)
Kt
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in cash flow, with A, σ > 0. The firm can invest It ∈ R into its capital stock, subject to

adjustment cost. Given flow investment It dt, the firm incurs an additional flow cost

in funds Ψ(It/Kt)Kt dt; Ψ satisfies Ψ(0) = Ψ′(0) = 0 < Ψ′′. When the firm is neither

financing nor paying dividends, internal funds Ht ≥ 0 evolve as: writing it ≡ It/Kt,

dHt =
(
A− it −Ψ(it)

)
Kt dt+ σKt dBt.

For simplicity, assume a quadratic cost: Ψ(i) ≡ ψ i2

2 for some ψ > 0. Given depreciation

rate δ ≥ 0, the firm’s capital stock Kt evolves as dKt/Kt =
(
it − δ

)
dt. While there is

no explicit capital trade, it < 0 represents divestment of capital into funds.

Stochastic parameters. I allow the parameters (ρ, r), (θ, γ), (A, σ), and (ψ, δ) to

be functions of an underlying state variable st ∈ S ⊂ R. Let st evolve continuously

as dst = µs(st) dt+ σs(st) dZt, where Zt is a standard Brownian motion independent

of Bt and both µs and σs satisfy standard regularity conditions. In baseline, st = s is

constant: µs = σs = 0. Its law of motion is summarized by the infinitesimal generator

S(V ) ≡ µs · Vs +
1

2
σ2s · Vss. (15)

I omit notations for s in parameters: ‘ρ’ is a stochastic discount rate ρ(st), for example.

Investment optimization. Define W (s,K,H) as firm value given state s, capital

K > 0, and funds H ≥ 0. Letting h ≡ H/K and V (s, h) ≡ W (s, 1, h), homogeneity in

(K,H) gives W (s,K,H) = KV (s, h). Omitting (s, h), per-capital HJB equation gives

ρV − rhVh = max
i∈R

{(
A− i−Ψ(i)

)
Vh +

1

2
σ2Vhh +

(
i− δ

) (
V − hVh

)︸ ︷︷ ︸
=WK

+S(V )

}

=⇒ i =
1

ψ

(
V

Vh
− h− 1

)
. (16)

6.3 Underinvestment

Section 6.1 has illustrated that insiders may sometimes forgo first-best lumpy invest-

ment. In the present formal setup, underinvestment relative to first-best arises globally.

Let h(s) ≡ inf{h | Vh(s, h) = 1} denote funding target given state s. I first show

that insiders with less internal funds invest less. Equation (16) yields ∂i(s, h)/∂h =

− 1
ψ

V (s,h)
Vh(s,h)2

Vhh(s, h). It thus reduces to a claim for concavity of V in internal funds.

Lemma 3 (Funds-driven underinvestment). V ′′(h) < 0 for all h < h.30

30Just for this lemma, I let s constant to avoid the complexities of PDE. While not proven,
concavity in funds seems plausible when parameters stochastically vary independently of funds.
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Lemma 3 does not yet imply global underinvestment, because one might wonder

whether investment is first-best at least at h = h(s). The answer is a definitive no.

Proposition 4 (Underinvestment at the top). Let i∗(s) first-best investment and ı(s)

optimal investment at state s with h = h(s). Then, ı(s) < i∗(s) for all s.

Proof. Let V ∗(s) first-best value per capital: θ∗ = 1. First-best investment rate is

i∗(s) =
1

ψ

(
V ∗(s)− 1

)
.

Letting V (s) ≡ V (s, h(s)), optimal investment rate at funding target is

ı(s) =
1

ψ

(
V (s)− h(s)− 1

)
,

since V h = 1. It must be that V ∗(s) > V (s) − h(s) so that i∗(s) > ı(s). If first-best

insiders with value V ∗(s) are somehow endowed with funds h = h(s), the entirety is

optimally paid out promptly so that their value is V ∗(s)+h(s). If they instead use the

funds to mimic the optimal strategy under θ < 1, they achieve a strictly higher value

than V (s) due to the absence of dilution. Therefore, letting Ṽ ∗ value of this deviation

strategy, it follows that V (s) < Ṽ ∗(s, h(s)) ≤ V ∗(s) + h(s), as claimed.

Investment reduces funds. As long as insiders have incentives to preserve funds

h > 0 despite the carry cost, they invest strictly less than without such incentives.

With a lower h, they are more incentivized so, and hence further reduce investment.

While this mechanism is well-known in the literature on liquidity frictions, it is still

noteworthy that here, underinvestment arises purely due to bargaining frictions.

6.4 Strategic underinvestment

In the main model from Sections 4 through 5, insiders only had financial slack as their

strategic choice. With lumpy investment in Section 6.1, investment is enabled only

upon an exogenous opportunity. Here, they can continually optimize with investment

and financial slack. How does this added choice affect firms’ optimal financial slack?

But first, let us abbreviate notations. Letting h(s), h(s) denote funding target

and financing threshold given state s, respectively, define V (s) ≡ V (s, h(s)), V (s) ≡
V (s, h(s)), and V o(s) ≡ V o(s, h(s)). The exclusion symbol o is in superscript for com-

patibility with partial derivatives; e.g., V o
h(s) ≡ V o

h (s, h(s)). Let ı(s), i(s), i
o(s) denote

optimal investment rates at corresponding funds h(s), h(s) and per exclusion status. I

also omit s in the optimal investment policy function: i(h) is optimal investment rate

at h with access to financing, which also depends on notationally suppressed state s.
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Proposition 5 (Underinvestment and dilution). With notations for exogenous state

s suppressed where appropriate, the following hold, in equilibrium, pointwise for each

s ∈ S. (i) Financiers extract rents from insiders through financing in the amount of:

(1− θ)
(
V − h

)
if insiders delay financing until funds are depleted h(s) = 0; and

1

γ + 1
2(ı− i)

[
φ∆h− 1

2

(
ı− i

)(
V − h

)
+

1

2

(
1− θ
θ

)(
i− io

)(
V o − hV o

h

)]
(17)

if insiders finance with financial slack h(s) > 0. (ii) Financing is early h(s) > 0 if

(1− θ)γ +
1

2

(
ı− i(0)

)
>

φh

V − h
. (18)

Inequality (18) implies that with investment choice, insiders may raise financing

early h > 0 even when alternative external financiers are not available γ = 0, as

illustrated by Figure 9. This is due to the term 1
2

(
ı−i(0)

)
, which is absent in Inequality

(13) from Proposition 2. It represents how much insiders underinvest because of funding

depletion ı− i(0), net of the quadratic adjustment cost 1
2 .

Figure 9: Underinvestment and financing dynamics

Bargaining parameters are (θ, γ) = (0.5, 0), and other parameters are adopted from Bolton et al. (2011):
(ρ, r) = (0.06, 0.05), (A, σ) = (0.18, 0.09) and (ψ, δ) = (1.5, 0.1007). All parameters are constant.

One may conjecture that if ı− i(0) is large, insiders raise financing early to reduce

the underinvestment that arises due to low funds i(h) on h ∈ [0, h]. This, however, is

not precise. Consider a canonical ‘fixed’ transaction cost of financing. Regardless of

where a financing threshold is, insiders reduce investment by the same magnitude to

avoid reaching it and paying the given cost; zero threshold thus strictly dominates (see

Bolton et al., 2011). In my theory, early financing h > 0 even with γ = 0 still arises

because, as (17) shows, the size of dilution is endogenous in financing strategy.

Recall from Section 6.1, in the discussion of ‘commitment’ to investment execution,

that financiers extract greater rents when, without financing, investment would be
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optimally forgone. By a similar logic, funds-driven underinvestment ı− i > 0 increases

surplus from financing, and hence dilution, because financing eliminates losses from it.

At the same time, dilution is, from insiders’ perspective, a (endogenous) transaction

cost of financing. Therefore, if it is large in equilibrium, insiders try to avoid financing

by underinvesting more when funds fall towards financing threshold. In short, there is

complementarity between funds-driven underinvestment and dilution.

With flexible investment, there is another factor. If financing were to fail, insiders

could underinvest even further in response to low funds i − io > 0. As the fraction
1−θ
θ in (17) indicates, this ‘fallback’ underinvestment improves insiders’ outside options

vis-à-vis financiers: even when permanently excluded from external financing γ = 0,

insiders could mitigate the risk of business failure by underinvesting even more when

funds are low. This would be feasible only if business failure is not imminent h > 0.

Figure 10: Strategic underinvestment and dilution

Financing rent is computed given a one-shot choice of financing at each h, which is suboptimal for h > h. Due
to exclusion, financing rent does not completely vanish (1− θ)

(
V − V o(h)

)
≈ 0.001 > 0; see Section 5.1.

Put differently, fallback underinvestment is a form of alternative self -financing,

reducing the size of dilution when insiders raise funds with financial slack. By the

aforementioned complementarity, then, insiders in equilibrium underinvest less when

close to financing threshold, which further reduces dilution. . . , and so forth. As Figure

10 shows, funding reserve h ≈ 0.056 makes dilution negligible – from 0.799 at h = 0

down to 0.006 at h = h – even without access to alternative external financing γ = 0.

What determines exact early financing threshold h > 0? Expression (17) is from

θγ
(
(1− x)V −∆h

)
+
θ

2

(
ı− i

)(
V − h

)
︸ ︷︷ ︸

=WK

= θφ∆h+
1− θ
2

(
i− io

)(
V o − hV o

h

)
︸ ︷︷ ︸

=W o
K

, (19)

where (1− x)V −∆h is the size of dilution. The threshold equalizes marginal benefits

(on the left-hand side) of earlier financing at ht = h over instantaneous delay to its
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marginal costs (on the right-hand side). Here, I only discuss the second term on each

side – the first terms are already addressed in the discussion following Proposition 2.

On the one hand, earlier financing raises continuation value by removing losses from

funds-driven underinvestment 1
2

(
ı− i

)
WK dt. But insiders do not fully internalize this

gain since financiers extract a fraction 1 − θ in rents. On the other hand, delaying

financing by dt increases insiders’ reservation value at bargaining by 1
2(i− i

o)W o
K dt; if

financing were to fail anyway, insiders would have accumulated more capital at t+ dt

by delaying the bargaining. By financing earlier at t instead, insiders’ reservation value

is lower by as much, which increases financiers’ rents by a fraction 1− θ.

Illustration. To illustrate the analysis, I modify the stylized setup in Section 6.1 to

model lumpy divestment. The business has ‘normalized’ running cash flow π dt+σ dBt.

At a Poisson arrival rate of λ > 0, the business receives opportunities to downsize

future cash flow by a factor of η ∈ (0, 1) in return for receiving funds −ξ > 0. I let

(ρ, r) = (0.07, 0), (π, σ) = (1, 1) and (η,−ξ) = (0.9, 0.7) so that divestment is not

first-best. Lastly, θ = 0.5 and there are no alternative external financiers γ = 0.

(a) λ = 1 (b) λ = 2

(c) λ = 4 (d) λ = 10

Figure 11: Ease of divestment opportunities λ, given γ = 0

Plots track internal funds, dilution and divestment given stochastic arrivals of divestment opportunities (vertical
dashed lines in gray). In the gray area, divestment is optimal; the black marker indicates actual divestment.

As Figure 11 shows, firms that are able to easily underinvest – in this case, divest

– incur small dilution from financing. Consequently, they have small incentives on

the path of equilibrium to actually divest in order to avoid financing. Indeed, with a

frequent opportunity to divest λ = 10 in Figure 11d, firms never divest in equilibrium.
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6.5 Downward scalability of investment

Section 6.4 shows that fallback underinvestment is a means of alternative self-financing.

But underinvestment is not confined to divestment. To explore the effects of downward

scalability of investment, I introduce a nonnegativity constraint to the setup in Section

6.2, i ≥ 0. Investment is thus perfectly irreversible, although it can be flexibly scaled.

Figure 12: No alternative external financiers γ = 0 and no divestment i ≥ 0

The black curves, in different thickness, represent optimal investment policy given internal funds on the equi-
librium path, bounded by funding target h in the blue line segments and financing threshold h in the red ones.

For the purpose of present analysis, upward scalability of investment is not directly

relevant. Therefore, I fix convex adjustment cost ψ = 1.5 that governs upward scala-

bility, and instead vary productivity A ∈ {0.175, 0.18} for simple comparative statics.

Other parameters are as in Figure 9, including no alternative external financiers γ = 0.

Figure 12 compares the two scenarios. The result that h1 = 0 given A = A1 ≡ 0.175,

on its own, appears consistent with the preceding analysis throughout this paper. If

insiders cannot find alternative external financiers or divest capital in response to a fi-

nancing failure, it would be difficult to improve their outside options vis-à-vis financiers

by having financial slack because, supposedly, there is nothing they can do to avoid

running out of funds. Insiders, therefore, delay financing as much as possible.

But then why do insiders finance early h2 > 0 with A = A2 ≡ 0.18? The answer

has to do with the ability to reduce positive investment in response to a financing

failure. Figure 13 adds graphs for fallback underinvestment and financing rent to each

case. In Figure 13a with A = 0.175, fallback underinvestment is concentrated towards

higher funds. Because divestment is impossible, insiders that are already investing none

i(h) = 0 cannot underinvest more in response to a financing failure i(h) − io(h) = 0.

Since fallback underinvestment is constrained by irreversibility, insiders’ outside options

vis-à-vis financiers are not sufficiently improved with financial slack, so that h1 = 0.

In Figure 13b with a higher A = 0.18, fallback underinvestment is still concentrated

upwards, but there are two differences. First, because insiders invest more on path i(h)
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(a) A = 0.175 (b) A = 0.18

Figure 13: Upward-concentrated fallback underinvestment

than with a lower A = 0.175, they can underinvest more off path if financing were to

fail; that is, i(h)−io(h) is larger given i(h) > 0. Second, if financing were to fail, insiders

would have a better chance for fallback underinvestment because higher productivity

A2 > A1 increases the upward drift in funds h. Hence, irreversibility constraint is less

binding, and insiders raise funds early to bargain with better outside options. The

size of dilution is 0.013, which is, although more than twice that with divestment (see

Figure 10), smaller by an order of magnitude than 0.546 with A = 0.175.

In sum, when alternative external financing is difficult to find γ = 0, firms with good

self -financing alternatives – that is, those that (i) can easily divest (see Section 6.4), or

(ii) are productive and sustain large investment with flexibility to scale it down – incur

small dilution. In equilibrium, they may not actually divest or drastically underinvest.

But the ability to do so if financing were to fail improves firms’ outside options, and

hence the payoffs from bargaining, when they raise financing with financial slack.

7 Conclusion

I present a dynamic theory of firm financial slack based on financier bargaining power.

It predicts that firms choose to raise financing in a lumpy fashion and maintain internal

funds in order to bargain with financiers – and pay rents – infrequently. Moreover, firms

may choose to raise financing early, before running out of internal funds, in order to

bargain when their outside options are better due to the ability to pursue financing

alternatives. Thus, lumpy financing reduces the frequency of financiers’ rent extraction

and early financing its size. In short, I argue that it is how financial slack improves

firms’ bargaining with financiers that determines the dynamics of firm financing.

By jointly rationalizing lumpy financing and early financing through bargaining,

this theory explains illiquidity in firm financing – in the form of financial slack – not

as an irreducible primitive, but rather as a phenomenon due to firms’ (second-best)

optimal financing strategy. Because this mechanism captures firms’ economic incentives
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at a deeper level, it yields richer implications. Macroeconomically in particular, this

theory positions capital reallocation and firm productivity as two separate conduits of

the single underlying economic force – that firm financing involves bargaining.

Looking forward, this paper suggests further research on questions such as (i) how

financial frictions and the real economy dynamically interact, and (ii) how market

structure in financial sector may affect firm financing and macroeconomic outcomes.

Fundamentally, this paper delivers a conceptual takeaway. The core of its theory is:

What might have happened determines what does happen – even macroeconomically.

Bargaining is one such theoretical context: firms’ outside options if financing were

to fail (‘what might have happened’) determine how much firm value is diluted in

anticipation of financiers’ rent extraction (‘what does happen’). The richness of this

theory’s predictions reaffirms that there are great returns to bringing to light such

strategic incentives of individual agents for studying economic outcomes at larger scales.
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Appendix A Omitted Proofs

A.1 Lemma 1 (Existence and uniqueness).

Proof. LetW be the space of continuous nonnegative bounded functions on H ≡ [0,H]

with an arbitrary H ≫ 0, and complete it with L∞ supremum metric. Keep cash flow

as in Section 4.1, and also the assumptions on dividends and business failure upon

funding depletion without prompt financing.31 Define T, To :W →W as: for W ∈ W,

1. h 7→ ToW (h) is the value function of ‘excluded’ insiders lacking the ability to

raise financing (so that the boundary condition is ToW (0) = 0), who, upon ‘re-

inclusion’ that occurs at the stopping time τγ given by a Poisson rate γ ∈ [0,∞),

receive a terminal payoff of W (hτγ ); and

2. h 7→ TW (h) is the value function of non-excluded insiders who can, at any t ≥ 0,

either (i) forgo financing, or (ii) raise financing through bargaining with financiers

where insiders’ outside option from bargaining is given by W (ht):

- if W (ht) is sufficiently high, ‘bargaining’ involves zero financing and zero

rents since (iii) insiders take the outside option such that TW (ht) =W (ht).

By the Theorem of the Maximum, the above transformations are well-defined as self-

maps given the continuity restriction in W.

An equilibrium value function V is a fixed point of the concatenated map T̂ ≡ T ◦To,
and vice versa; if V exists, then Vo ≡ ToV . If T̂ is a contraction on W, by contraction

mapping theorem there exists a unique fixed point V ∈ W such that V = T̂ V .

The claim on T̂ follows from Blackwell’s Lemma. First, obviously T̂ is nondecreas-

ing: W ′ ≥ W on H implies T̂W ′ ≥ T̂W on H. Second, let us show that there exists

some ζ ∈ [0, 1) such that for any W ∈ W and w ∈ R++, T̂ (W + w) ≤ T̂W + ζw.

Recall that τγ occurs at a Poisson rate γ ∈ [0,∞). Then,

To(W + w) ≤ ToW + ζργw, (A.1)

where ζργ ≡ E [e−ρτγ ] = γ
γ+ρ < 1.32 As an aside, To is a contraction on W, and its

unique fixed point is invariant to γ ∈ [0,∞). Next, for any w ∈ R++,

T (W + w) ≤ TW + w. (A.2)

31Also enforce that whenever ht > H, dividend payout of at least ht −H is mandatory.
32The Poisson structure is not essential; one can, for example, assume that re-inclusion deter-
ministically occurs at τγ ≡ 1/γ > 0, in which case ToW (h) is excluded insiders’ value at t = 0
with h0 = h given the otherwise identical environment. As long as re-inclusion takes some time
with nonzero probability P(τγ > 0) > 0, the bonus dividend w ∈ R++ that is received only
upon re-inclusion is, from t = 0, discounted in expectation (at least) by a factor of E[e−ρτγ ] < 1.
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This is because marginal benefit from uniform global improvement in reservation value

function does not exceed unity. The upper bound is attained wherever on ht ∈ H (iii)

the outside optionW (ht) is so good that insiders take it, TW (ht) =W (ht). Otherwise,

marginal benefit is 1 − θ wherever on H insiders optimally (ii) raise positive funds

through bargaining, and zero wherever on H insiders optimally (i) forgo financing.33

T is not strictly a contraction, but it is not ‘expansionary’: its contraction coefficient

is unity. Therefore, T̂ inherits the coefficient ζργ ∈ [0, 1) from To: for any w ∈ R++,

T̂ (W + w) = T
(
To(W + w)

)
≤ T

(
ToW + ζργw

)
≤ T

(
ToW

)
+ ζργw = T̂W + ζργw.

The first inequality is from Inequality (A.1) and monotonicity of T , and the second from

Inequality (A.2). By Blackwell’s Lemma, T̂ is a contraction on W, as desired.3435

A.2 Lemma 2 (Monotone financing strategy)

Proof. (Continued from Section 5.2) Rewrite Inequality (11) as:

G(h) ≡ (1− θ)γ
(
V (h)− Vo(h)

)
− θφ

(
h− h

)
≥ 0

=⇒ G′(h) = θ
(
φ− (1− θ)γ

(
V ′
o(h)− 1

))
, (A.3)

since V ′(h) = θ + (1 − θ)V ′
o(h) from Equation (4). Since h ≡ supB > 0, insiders at

ht = h are indifferent between financing and instantaneous delay G(h) = 0. Since

delay is optimal above h, G′(h) ≤ 0. If Vo is concave in h on [0, h], then Equation (A.3)

implies that G′(h) ≤ 0 for h < h so that G(h) ≥ 0 for h < h. Therefore, [0, h] ⊂ B.

On the (strict) concavity of Vo, consider the associated dividend threshold ho > 0.

The proof proceeds as (i) ho > h, (ii) V ′′
o < 0 on [h, ho), and (iii) V ′′

o < 0 on [0, h).

(i) ho > h. Suppose not. Smooth pasting and super contact at h = ho yield

ρVo(ho)− rho = µ+ λ
(
Π+ ho − Vo(ho)

)
+ γ
(
V (ho)− Vo(ho)

)
≥ µ+ λ

(
Π+ ho − Vo(ho)

)
,

because γ ≥ 0 and V (ho) > Vo(ho) from exclusion. Solve for Vo(ho) to obtain

Vo(ho) ≥
µ+ λΠ

ρ+ λ
+
(r + λ

ρ+ λ

)
ho.

33These are pointwise effects of a rise inW (h) on TW (h). WhenW globally shifts up uniformly,
marginal effect on any TW (h) is a weighted average of 1, 1− θ and 0, and hence unity at most.
34Supplemental Appendix SA.3 graphically illustrates the proof.
35Using T̂ for numerical algorithm is inefficient: for anyW ∈ W, ToW and TW are themselves
fixed points of the respective contractions specific to W . Algorithm in Supplemental Appendix
SB.1 uses Poisson re-inclusion to jointly obtain (V, Vo) by a single standard HJB iteration.
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Since ho is the dividend payout threshold under exclusion and h ≥ ho by assumption,

Vo(h) = Vo(ho) + (h− ho) ≥
µ+ λΠ

ρ+ λ
+
(r + λ

ρ+ λ

)
ho + (h− ho)

=
µ+ λΠ

ρ+ λ
+ h−

(
1− r + λ

ρ+ λ

)
ho ≥

µ+ λΠ

ρ+ λ
+
(r + λ

ρ+ λ

)
h = V (h),

where the last inequality is since r+λ
ρ+λ < 1 and h ≥ ho. This contradicts Proposition 1.

(ii) V ′′
o < 0 on [h, ho). First, suppose σ > 0. Differentiate (9) at h = ho while

substituting V ′
o(ho) = 1, V ′′

o (ho) = 0 to obtain a third (left) derivative as

V ′′′
o (ho) =

2

σ2

(
φ− γ

(
V ′(ho)− 1

))
=

2

σ2
φ > 0,

because ho > h and so V ′(ho) = 1. Therefore, there exists some neighborhood below

ho on which V ′′
o < 0. Suppose by way of contradiction that there exists ĥ ∈ [h, ho) such

that V ′′
o < 0 on (ĥ, ho) but V

′′
o (ĥ) = 0. Then, V ′′′

o (ĥ) ≤ 0. Differentiating the HJB at

h = ĥ gives a third (left) derivative as

0 ≥ V ′′′
o (ĥ) =

2

σ2

(
φV ′

o(ĥ) + λ
(
V ′
o(ĥ)− 1

)
+ γ
(
V ′
o(ĥ)− V ′(ĥ)

))
.

Since V ′
o(ĥ) > 1 from V ′

o(ho) = 1 and V ′′
o < 0 on (ĥ, ho), the above implies that γ > 0

(that is, contradiction is reached if γ = 0) and V ′
o(ĥ)−V ′(ĥ) < 0. Then ĥ < h, because

h ≥ h implies V ′(h) = 1. Since V ′
o(h) − V ′(h) > 0 due to h ∈ (ĥ, ho), intermediate

value theorem implies that there exists h̃ ∈ (ĥ, h) such that V ′
o(h̃)− V ′(h̃) = 0. But

V ′′
o (h̃)− V ′′(h̃) =

2

σ2

((
(ρ+ λ+ γ)Vo(h̃)− rh̃V ′(h̃)− λ(Π + h̃)− µV ′(h̃)− γV (h̃)

)
−
(
(ρ+ λ)V (h̃)− rh̃V ′(h̃)− λ(Π + h̃)− µV ′(h̃)

))
=

2

σ2
(ρ+ λ+ γ)

(
Vo(h̃)− V (h̃)

)
< 0;

that is, the graph of V ′
o−V ′ on [ĥ, h] can never cross zero from below, which contradicts

V ′
o(ĥ)− V ′(ĥ) < 0 < V ′

o(h)− V ′(h) and ĥ < h.

Next, let σ = 0. By Assumption 1, µ < 0, λ > 0 and Π > −µ
λ > 0. Since this is

essentially the startup example from Section 4.1, relabel κ ≡ −µ > 0. Differentiating

(9) at h = ho gives a second (left) derivative as

V ′′
o (ho) = −

φ

κ− rho
,

because of smooth pasting V ′
o(ho) = 1 and ho > h giving V ′(ho) = 1. Since the last part
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of Assumption 1 ensures that κ > rho, it follows that V
′′
o (ho) < 0 (as a left derivative).

Again suppose that there exists ĥ ∈ [h, ho) such that V ′′
o < 0 on (ĥ, ho] and V

′′
o (ĥ) = 0.

Differentiating (9) at ĥ gives

φV ′
o(ĥ) + λ

(
V ′
o(ĥ)− 1

)
+ γ
(
V ′
o(ĥ)− V ′(ĥ)

)
= 0.

Since V ′
o(ĥ) > 1, this again implies that γ > 0 and V ′

o(ĥ) − V ′(ĥ) < 0. The same

reasoning as with σ > 0 implies ĥ < h. Since V ′
o(h) − V ′(h) > 0, intermediate value

theorem again implies that there exists h̃ ∈ (ĥ, h) such that V ′
o(h̃) = V ′(h̃). Then,

ρVo(h̃)− rh̃V ′(h̃) = λ
(
Π+ h̃− Vo(h̃)

)
− κV ′(h̃) + γ

(
V (h̃)− Vo(h̃)

)
,

ρV (h̃)− rh̃V ′(h̃) = λ
(
Π+ h̃− V (h̃)

)
− κV ′(h̃),

and therefore, Vo(h̃) = V (h̃), contradicting exclusion γ <∞.

(iii) V ′′
o < 0 on [0, h). First, suppose σ > 0. Because V ′′

o (h) < 0, there exists

a neighborhood below h on which V ′′
o < 0. The aforementioned observation on G′

implies that if V ′′
o < 0 on a neighborhood below h, then its closure is a subset of B.

Substituting (4) that holds on B, the HJB equation for Vo on this interval is

ρVo(h)− rhV ′
o(h) = H(Vo)(h) + θγ

((
V (h)− h

)
+ h− Vo(h)

)
,

where H is defined in (7). Suppose by way of contradiction that there is h̃ ∈ [0, h) such

that V ′′
o < 0 on (h̃, h) but V ′′

o (h̃) = 0. Note that V ′
o(h̃) > 1, because V ′

o(ho) = 1 and

V ′′
o < 0 on (h̃, ho). Differentiating the above HJB at h̃ gives a third derivative as

V ′′′
o (h̃) =

2

σ2

(
(φ+ λ+ θγ)V ′

o(h̃)− (λ+ θγ)
)
>

2

σ2
φ > 0,

which contradicts V ′′
o (h̃) = 0 and V ′′

o < 0 on (h̃, h].

Next, let σ = 0 and relabel κ ≡ −µ > 0. Since V ′′
o (h) < 0, there is a neighborhood

below h which is a subset of B and on which V ′′
o < 0. Differentiating the HJB gives

φV ′
o(h) + (λ+ θγ)

(
V ′
o(h)− 1

)
+ (k − rh)V ′′

o (h) = 0.

Suppose by way of contradiction that there exists ĥ < h such that V ′′
o < 0 on (ĥ, h]

but V ′′
o (ĥ) = 0. Then, [ĥ, h] ⊂ B by the property of G′; so the above holds at h = ĥ.

But it contradicts V ′
o(ĥ) > 1, which follows from V ′

o(ho) = 1 and V ′′
o < 0 on (ĥ, ho].

Auxiliary claim: V ′′ < 0 on [0, h). First consider [h, h). If σ > 0, strict concavity

holds by the same reasoning (ii) above but with γ = 0 so that a third (left) derivative at
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ĥ gives contradiction. Suppose σ = 0 and adopt the startup relabeling. Differentiating

the HJB (7) gives a second (left for h = h, right for h = h) derivative on [h, h] as

V ′′(h) = −
φV ′(h) + λ

(
V ′(h)− 1

)
κ− rh

.

By Assumption 1, rh < κ. By smooth pasting V ′(h) = 1, V ′′(h) < 0. For any ĥ ∈ [h, h)

such that V ′′ < 0 on (ĥ, h], V ′(ĥ) > 1 and so V ′′(ĥ) < 0. As such, V ′′ < 0 on [h, h].

Strict concavity of V on [0, h] is immediate because V ′′ = (1− θ)V ′′
o < 0 on it.

A.3 Corollary 1 (Monotonicity of early financing)

Proof. Evaluate Inequality (11) at h = 0 and reverse it: B = {0} if and only if

(1− θ)γV (0) = (1− θ)γθ
(
V (h)− h

)
≤ θφh =⇒ (1− θ)γ ≤ φh

V (h)− h
.

The claim then follows because the right-hand side is positive and nonincreasing in γ,

as implied by the reasoning for Part 1 in the proof of Proposition 3.36

A.4 Proposition 3 (Comparative statics in θ and γ)

Proof. Constancy of (h, h) in γ ∈ [0, γ] is because γ ≤ γ implies Vo(h) = Vo(0) = 0.

Part 1. Take γ2 > γ1 ≥ γ and consider the equilibrium with γ = γ2. When insiders

bargain with financiers, they choose h2 to maximize V (h2; γ2) − h2. Suppose that

they agree, as a one-shot deviation, to choose h1 instead and then mimic the optimal

financing strategy under γ = γ1 (i.e., refinance at h1, pay out above h1) until next

financing. Denote the payoff function associated with this strategy as Ṽ . Note that

Ṽ (h1; γ2) > V (h1; γ1), as the reservation value at ht = h1 > 0 is strictly higher with

γ = γ2 > γ1. Since h2 without the one-shot deviation is optimal, V (h2; γ2) − h2 ≥
Ṽ (h1; γ2)− h1 > V (h1; γ1)− h1. Finally, since

V (h; γ)− h =
1

ρ+ λ

(
µ+ λΠ− φh

)
, (A.4)

from evaluating Equation (8) with V ′(h) = 1 and 1
2σ

2V ′′(h) = 0, we have h2 < h1.

Global strict monotonicity in θ is established by a similar reasoning.

Part 2. Strict monotonicity of h = h −∆h > 0 in θ is immediate from decreasing h

in Part 1 and nondecreasing ∆h in Part 3. The claim on existence of θ is from Parts

3 and 4 since ∆h > 0 is nondecreasing in θ when h > 0 but ∆h→ 0 when θ → 1.

36Only strict monotonicity in the reasoning for Part 1 of Proposition 3 relies on Corollary 1.
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Part 3. Strict monotonicity of ∆h in θ when h = 0 follows from that of h in θ in Part

1. Now, suppose that h > 0. Rearranging (12) which equals V (h)− V (h)−∆h gives

1 +
φ

γ
=
V (h)− V (h)

∆h
=

1

∆h

∫ h

h−∆h
V ′(h) dh. (A.5)

That is, early financing specifies the average of the first derivative of V over [h −
∆h, h]. Recall that dividend optimality stipulates that V ′(h) = 1 and 1

2σ
2V ′′(h) = 0.

Therefore, given h > 0, one can equivalently think of V as satisfying the HJB equation

globally below h and ∆h as simply choosing when the first derivative on the interval

meets the desired average 1 + φ
γ . By strict concavity of V below h (see the end of

Appendix A.2), V ′(h) > 1 if and only if h < h.

Since the first derivative is concerned, V (h) is irrelevant. Differentiate the HJB:

σ > 0 =⇒ V ′′′(h) =
2

σ2

[
− (µ+ rh)V ′′(h) + (φ+ λ)V ′(h)− λ

]
,

σ = 0 =⇒ V ′′(h) = − 1

κ− rh

[
(φ+ λ)V ′(h)− λ

]
.

If r = 0, the above equation that determines the evolution of V ′ below h is independent

of (θ, γ). Since the desired average is 1 + φ
γ , the claims when r = 0 are established.

Suppose r > 0. First, let σ > 0. Given an arbitrary ∆̃h > 0, a higher h means that

for any δh ∈ (0, ∆̃h], V ′′′(h− δh) is pointwise higher (recall that V ′′ is negative below

h). Therefore, V ′′(h − δh) = −
∫ h
h−δh V

′′′(h) dh is pointwise lower. Next, let σ = 0.

Because V ′(h) > 1 for h < h and κ > rh by Assumption 1, a higher h means that,

again because V ′(h) > 1 for h < h, V ′′(h− δh) is pointwise lower. In either case, then,

V ′(h− δh) = 1−
∫ h

h−δh
V ′′(h) dh

is pointwise higher, and so a higher h, ceteris paribus, reduces ∆h. The claim then

follows from Part 1.

Part 4. Since h ≥ 0 decreases in θ, it converges as θ → 1− by monotone convergence

theorem. Suppose by way of contradiction that h→ h̃ > 0 as θ → 1−. Inequality (13)

implies that there exists37 some θ ∈ (0, 1) such that h = 0 for any θ ∈ [θ, 1), because

h ≥ h̃ > 0 and V (h)− h is bounded above by the frictionless net present value.

Consider θ > θ. Since h = 0, Proposition 2 implies that the size of dilution is

(1 − θ)
(
V (h) − h

)
, which vanishes as θ → 1− because V (h) − h is bounded above.

At the same time, the buffer interval [h, h] converges, in a two-dimensional sense, to

[0, h̃] with a strictly positive length. For any θ ∈ [θ, 1), insiders incur a carry cost in

37This holds in itself by Part 2. But Part 2 relies on Part 4. So I reason independently here.
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equilibrium that does not vanish with θ → 1− exactly because h̃ > 0. But dilution

from financing vanishes. As such, given a sufficiently high θ ∈ [θ, 1), it must be strictly

profitable to lower the funding target h < h̃ and reduce the non-vanishing carry cost

while raising the frequency of the vanishingly small dilution, a contradiction.

Next, Inequality (13) implies that h is positive for γ sufficiently high, since net

value V (h)−h is increasing in γ and h is decreasing. From the proof for Part 3 above,

∆h → 0 as γ → ∞. Therefore, it suffices to show that h = h − ∆h → 0 as well.

Suppose by way of contradiction that h → h̃ > 0.38 For any fixed small ε ∈ (0, h̃),

V −Vo → 0 uniformly on [ε, h̃] as γ →∞, and so does V ′−V ′
o → 0. Nash bargaining (4)

then implies that V ′
o(h)→ 1 uniformly on [ε, h̃]. Therefore, across h ∈ [ε, h̃], marginal

reduction in financing rent (1 − θ)
(
V ′
o(h) − 1

)
from a higher h vanishes. Hence, the

marginal benefit of h → h̃, taken as a single-dimensional Markov strategy, vanishes.

But its marginal cost is constant at φ
ρ+λ > 0 because φh̃ dt is a constant carry cost.

Therefore, it is strictly profitable, asymptotically, to set h = ε < h̃, a contradiction.

A.5 Lemma 3 (Funds-driven underinvestment)

Proof. I use a slightly different notation just for this proof. Let B (not B) the set of

internal fund levels h ≤ h where financing is optimal, and let h = supB. Similar to

the proof of Lemma 2, the argument proceeds as (i) ho > h, (ii) V ′′
o (h), V

′′(h) < 0

on [0, h) \B, and (iii) V ′′
o (h), V

′′(h) < 0 on B. Unlike it, investment choice makes it

elusive to prove that B, which contains zero, is an interval from zero. As such, I do not

impose the structure of B, except that h < h for which Proposition 1 holds, in proving

the strict concavity of V .39 Therefore, Parts (ii) and (iii) are iteratively proven.

(i) ho > h. Suppose not. First, rearrange the main HJB as(
ρ+ δ +

1

ψ

)
V −

(
A+

1

2ψ
+

(
r + δ +

1

ψ

)
h

)
V ′ − 1

2ψ

(
V 2

V ′ − 2hV − h2V ′
)

− 1

2
σ2V ′′ ≡ ρ̃V −

(
µ̃+ r̃h

)
V ′ − 1

2ψ

(
V 2

V ′ − 2hV − h2V ′
)
− 1

2
σ2V ′′ = 0.

Rearrange for V ≡ V (h) and V o ≡ Vo(ho) using smooth pasting and super contact:

Ω(V |h) = 0, Ω(V o|ho) + γ
(
V (ho)− V o

)
= 0,

where Ω(v|h) ≡ 1
2ψv

2 −
(
ρ̃+ h

ψ

)
v +

(
µ̃+ r̃h− h2

2ψ

)
. Then, Ωv(V |h) < 0, because,

38By Bolzano-Weierstrass theorem, such an increasing sequence {γn}n∈N (γn →∞) exists.
39This is why Inequality (18) in Proposition 5 might potentially not be a necessary condition
for early financing – although numerical algorithm in Supplemental Appendix SB.1, which does
not rely on B being an interval, seems to always generate an interval for it.
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letting V ∗ first-best value, both roots solving Ω(v∗|0) = 0 are strictly between v− − h
and v+−h, where v± are the two roots of Ω(v|h) = 0, even as V−h < V ∗; i.e., V = v−.40

Since Vo(h) = V o+ (h− ho) < V by h ≥ ho, it holds that 0 < Ω
(
V o+ (h− ho)|h

)
, i.e.,

0 <
1

2ψ
V

2
o −

(
ρ̃+

ho
ψ

)
V o +

(
µ̃+ r̃ho

)
− φ(h− ho) +

h
2
o

2ψ
− h

2

ψ

≤ 1

2ψ
V

2
o −

(
ρ̃+

ho
ψ

)
V o +

(
µ̃+ r̃ho −

h
2
o

2ψ

)
= −γ

(
V (ho)− V o

)
,

where the second inequality is from h ≥ ho. This contradicts exclusion V (ho) > V o.

Parts (ii) and (iii) need some notations. Let B̃ be B without its isolated points. Let

B a collection of disjoint closed intervals with nonempty interiors whose union gives B̃.

Let C a collection of disjoint intervals with nonempty interiors whose union gives the

closure of [0, h] \ B̃ but excluding h. Index each interval by its supremum:

B =: {Bhj | j ∈ JB}, C =: {Chj | j ∈ JC}, where

{hj | j ∈ JB} ≡ {supB | B ∈ B} and {hj | j ∈ JC} ≡ {supC | C ∈ C}.

Given the requirements of nonempty interiors, both JB and JC are at most countable.

(ii) V ′′
o , V

′′ < 0 on Chj for all j ∈ JC . First, consider Ch = [h, h). I address Vo first.

Differentiate the HJB for Vo at h = ho > h for a third (right) derivative:

V
′′′
o =

2

σ2

(
φ+

2

ψ
ho

)
> 0,

where ho > h gives V ′(ho) = V
′
o. Thus, V

′′
o < 0 on a neighborhood below ho. Suppose

BYOC that there exists ĥ ∈ [h, ho) such that V ′′
o < 0 on (ĥ, ho) but V

′′
o (ĥ) = 0. Then,

0 ≥ V ′′′
o (ĥ) =

2

σ2

(
φV ′

o(ĥ) +
2

ψ
ĥV ′

o(ĥ)− γ
(
V ′(ĥ)− V ′

o(ĥ)
))

.

Therefore, γ > 0 and V ′(ĥ) − V ′
o(ĥ) > 0. Since V ′(h) − V ′

o(h) < 0 from ho > h,

intermediate value theorem implies that there is h̃ ∈ (ĥ, h) such that V ′(h̃)−V ′
o(h̃) = 0.

V ′′(h̃)− V ′′
o (h̃) =

2

σ2

((
ρ̃+ γ +

h̃

ψ

)(
V (h̃)− Vo(h̃)

)
− 1

2ψ

V (h̃)2 − Vo(h̃)2

V ′(h̃)

)

=
2

σ2

(
ρ̃+ γ − 1

ψ

(
V (h̃) + Vo(h̃)

2V ′(h̃)
− h̃

)
︸ ︷︷ ︸

≡(a)

)(
V (h̃)− Vo(h̃)

)
︸ ︷︷ ︸

>0

.

40To have a well-defined value of V ∗, assume that A ≤ (ρ+ δ)
(

(ρ+δ)ψ
2 + 1

)
.
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Note that (a) < ψρ̃. This is established by the following reasoning. First,

V (h̃) + Vo(h̃)

2V ′(h̃)
− h̃ < V (h̃)

V ′(h̃)
− h̃ < V − h,

because V ′′ < 0 on [h, h) – which holds by the identical reasoning (up to imposing a

nonpositive third derivative of V at h = V ′′(−1)(0)) but with γ = 0 – and so

∂

∂h

(
V (h)

V ′(h)
− h
)

= 1− V (h)

V ′(h)2
V ′′(h)− 1 > 0.

Next, V −h < ψρ̃, since V is, as shown when proving (i), the lower root of Φ(v|h) = 0:

V = h+ ψ

ρ̃−
√(

ρ̃+
h

ψ

)2

− 2
µ̃+ r̃h

ψ
+
h
2

ψ2

 < h+ ψρ̃.

Thus, (a) < ψρ̃. And therefore, V ′′(h̃)− V ′′
o (h̃) > 0, contradicting h > ĥ and V ′(ĥ)−

V ′
o(ĥ) > 0 > V ′(h)− V ′

o(h).

As for V on Ch, the same reasoning as above but with γ = 0 gives contradiction

more directly since 0 < V ′′′(ĥ). Next, for other Chj s with hj < h, assume that V ′′
o < 0

on [hj , ho) and V ′′ < 0 on [hj , h) and proceed with the above reasoning starting at

the contradiction-inducing assumption of the existence of ĥ ∈ Chj where the second

derivative becomes zero for the first time (with h going down). Regarding applying

intermediate value theorem to the existence of h̃, which is relevant for Vo, use the fact

that such h̃ can only exist on one of the Chj s; on any Bh ∈ B, V ′ = θ+ (1− θ)V ′
o < V ′

o

since V ′
o > 1 by the assumed strict concavity of Vo on [hj , h

o
] and V

′
o = 1. Jointly with

Part (iii), the initial assumption of strict concavity above hj will hold.

(iii) V ′′
o , V ′′ < 0 on Bhj for all j ∈ JB. Start by assuming that V ′′

o < 0 on

[hj , ho), which will be iteratively validated jointly with Part (ii). Suppose by way

of contradiction that there exists ĥ ∈ Bhj \ {hj} such that V ′′
o < 0 on (ĥ, hj) but

V ′′
o (ĥ) = 0. Since Bhj ⊂ B, substitute the identity V = θ

(
V − (h− h)

)
+ (1− θ)Vo on

Bhj and differentiate the HJB for Vo to obtain the third derivative at h = ĥ as

V ′′′
o (ĥ) =

2

σ2

((
φ+ 2

ĥ

ψ

)
V ′
o(ĥ) + θγ

(
V ′
o(ĥ)− 1

))
> 0,

since V ′
o(ĥ) > 1 from V ′′

o < 0 on (ĥ, ho) and V
′
o = 1. This contradicts V ′′

o (ĥ) = 0 and

V ′′
o < 0 on a neighborhood above ĥ. Hence, V ′′

o < 0 and V ′′ = (1− θ)V ′′
o < 0 on Bhj .

Iteratively from above, Parts (ii) and (iii) prove that V ′′ < 0 on [0, h).
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A.6 Proposition 5 (Underinvestment and dilution)

Proof. Financing is preferred to an instantaneous delay at (s, h) (h > 0) if and only if

ρV (s, h)− rhVh(s, h) ≥ H(V )(s, h) +K(V )(s, h) + S(V )(s, h), (A.6)

where H(V ) ≡
(
A+

1

2ψ

)
Vh +

1

2
σ2 · Vhh −

(
δ +

1

2ψ

)(
V − hVh

)
,

K(V ) ≡ 1

2
i
(
V − hVh

)
given optimal i from Equation (16),

and S is given in (15). The right-hand side obtains by substituting (16). When

financing is optimal, the bargaining identity (4) applies, that is,

V (s, h) = θ
(
V (s, h(s))− h(s) + h

)
+ (1− θ)V o(s, h). (A.7)

Last, V o satisfies ρV o − rhV o
h = H(V o) +K(V o) + S(V o) + γ

(
V − V o

)
.

Since Vh(s, h(s)) = 1 and Vhh(s, h(s)) = 0 by smooth pasting and super contact,

Vh(s, h) = θ + (1− θ)V o
h (s, h), Vhh(s, h) = (1− θ)V o

hh(s, h),

V (s, h)− hVh(s, h) = θ
(
V (s, h(s))− h(s)

)
+ (1− θ)

(
V o(s, h)− hV o

h (s, h)
)
.

Consequently, H(V )(s, h) = θH(V )(s, h(s)) + (1− θ)H(V o)(s, h).

h
′
(s) is defined by implicit function theorem on Vhh(s, h(s)) = 0 since Vhhh > 0 at

(s, h(s)). Totally differentiating Vh(s, h(s)) = 1 in s gives Vsh(s, h(s)) = 0. Then,

d

ds

(
V (s, h(s))− h(s)

)
= Vs(s, h(s)) + Vh(s, h(s))h

′
(s)− h′(s) = Vs(s, h(s)),

d2

ds2

(
V (s, h(s))− h(s)

)
= Vss(s, h(s)) + Vsh(s, h(s))h

′
(s) = Vss(s, h(s)).

As such, S(V )(s, h) = θS(V )(s, h(s)) + (1− θ)S(V o)(s, h).

H and S are thus canceled (see Section 5.2), so that Inequality (A.6) becomes

(1− θ)γ
(
V (s, h)− V o(s, h)

)
≥ θφ

(
h(s)− h

)
+K(V )(s, h)− θK(V )(s, h(s))− (1− θ)K(V o)(s, h). (A.8)

Equation (A.7) implies that if bargaining is optimal at h, then V − hVh = θ
(
V − h

)
+

(1− θ)
(
V o − hV o

h

)
; substitute it into K(V )(s, h) in (A.8). Evaluate at h = 0 to obtain

(18). Given h = h(s) where (A.8) holds with equality, substitute (1 − θ)(V − V o) =

θ
(
(1− x)V −∆h

)
(see discussion of Proposition 2 in Section 5.3) to obtain (19). Add

and subtract θ
2

(
ı − i

)(
V − h

)
on the right-hand side of (A.8) at h = h(s), substitute(

V − h
)
−
(
V − h

)
= (1− x)V −∆h, and solve for (1− x)V −∆h to obtain (17).
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Supplemental Appendix A Other Discussions

SA.1 Comparison with existing models

Comparison
Models for financial slack

Fixed costs Search frictions This paper

I. Mechanism

Zero financial slack Not first-best Not feasible First-best/feasible

Lumpy Arises? Yes Yes Yes

financing Rationale Optimality Feasibility Optimality

Early Arises? Not in itself Yes Yes

financing Rationale ‘Market timing’ Feasibility Optimality

II. Implications

Future prospect ↑ No change Slack ↑ Slack ↑

Observed financing costs As assumed ∝ value

If financing is early,

∝ funds raised;

if not, ∝ value

Access to financing ↑ Slack ↓ Slack ↓ Not necessarily

Macro connection Financing → real Financing ←→ real Financing ←→ real

SA.2 Robustness to within-period bargaining

Here, I discuss how θ can accommodate various static bargaining environments. I

illustrate it using the stylized setup in Section 3, but the implications extend to the

main model. Let ct continuation value and vot the firm’s reservation value on date t.

Multiple suppliers (financiers) on each date. Suppose that n ∈ N suppliers visit

the firm on each date. I assume that the firm bargains with one supplier at a time. If

bargaining were to fail, the firm can bargain with another supplier on the same date.

Each supplier commits to refusing to bargain with the firm conditional on his previous

bargaining failure with it. Let vmt firm value from bargaining with the mth supplier on

date t, m ≤ n. Then,

vnt = θct + (1− θ)vot ,

vn−1
t = θct + (1− θ)vnt =

(
1− (1− θ)2

)
ct + (1− θ)2vot ,

vn−2
t = θct + (1− θ)vn−1

t =
(
1− (1− θ)3

)
ct + (1− θ)3vot

. . .

v1t = θct + (1− θ)v2t =
(
1− (1− θ)n

)
ct + (1− θ)nvot .

Therefore, it is equivalent to θn ≡
(
1−(1−θ)n

)
∈ [θ, 1); expectedly, θn → 1 as n→∞.
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Nesting Bertrand competition. Let n = 2 above, and suppose that each supplier

can fully commit to refusing to bargain with the firm consecutively, and otherwise can

commit to refusing to bargain with an i.i.d. probability χ ∈ [0, 1] in case the firm has

failed in bargaining beforehand. Once the firm is denied bargaining by either supplier,

no more bargaining is allowed on that date. Because bargaining does not fail on the

path of play in any subgame, the value of each supplier’s outside options when he is

bargaining with the firm is zero. Letting vBt firm’s value from bargaining,

vBt = θct + (1− θ)
(
χvot + (1− χ)vBt

)
=⇒ vBt =

θ

1− (1− θ)(1− χ)
ct +

(
1− θ

1− (1− θ)(1− χ)

)
vot .

Therefore, this is equivalent to θχ ≡ θ
1−(1−θ)(1−χ) ∈ [θ, 1]. Note that θχ = 1 if and only

if χ = 0, that is, suppliers cannot commit at all except upon immediate bargaining

failure. This essentially describes Bertrand competition. In sum, when the firm must

bargain with each supplier bilaterally, perfect competition à la Bertrand between two

suppliers obtains if and only if suppliers lack commitment technology altogether χ = 0.

SA.3 Contraction from two-step recursion: illustration

Take the space W and the three self-maps T̂ , T, To : W → W as defined in Appendix

A.1. Here, I illustrate the proof that T̂ is a contraction, such that contraction mapping

theorem can be applied. Let V ∗ ∈ W be first-best value function, that is, without

financing frictions and Ṽo ∈ W value function under complete autarky, that is, γ = 0.

By way of analogy, visualize the infinite-dimensional W as a simple R+. A contin-

uous, nondecreasing, and piece-wise differentiable self-map on R+ is a contraction if

and only if its derivative, wherever defined, is below ζ for some ζ ∈ [0, 1).

Figure SA.1a describes T and To. First consider T . If insiders’ outside option is

preferred to the first-best W ≥ V ∗, they are going to simply take it – the embedded

choice (iii) in the definition of T – see Appendix A.1. Therefore, its slope above V ∗

is unity. If W < V ∗, then insiders do not take the option, but this ‘outside’ option is

still beneficial to the extent that insiders bargain with financiers. Since better outside

option reduces financiers’ rents by a fraction 1− θ subject to bargaining taking place,

the slope of T below V ∗ is (ii) 1− θ given bargaining and (i) zero given no bargaining.

As shown, T is not a contraction: any point above V ∗ is one of its fixed points.

Next, consider To: insiders are on autarky until the stopping time τγ when the

business gives W as a terminal payoff. A higher terminal payoff benefits insiders but

only up to a discounting due to time delay E
[
e−ρτγ

]
∈ [0, 1), which thus bounds the

slope of To. Therefore, To is a contraction and has a unique fixed point.
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W

W

45◦

V ∗

V ∗

Ṽo

Ṽo

(i
ii)
:
T
′ =

1

T

(ii)
: T

′ =
1−

θ

(i): T ′ = 0

T
′
o
≤ E
[ e−ρτ

γ

] <
1

To

(a) Before composition T, To

W

W

45◦

V ∗

V ∗

Ṽo

Ṽo

V

V

T̂
=
T
◦ To

Vo

Vo

T̂ ′ ≤ E
[
e−ρτγ

]
< 1

(b) Composition T̂ and unique fixed point

Figure SA.1: Two-step recursion as a contraction map

But To, in itself, is a particularly uninteresting contraction. Regardless of γ ∈
[0,∞), its fixed point is always Ṽo. If at τγ insiders receive their own value as a terminal

payoff, they are exactly compensated for the termination anyway. Accordingly, the

graph of To rotates as γ changes but centered on the invariant fixed point (Ṽo, Ṽo).

Even though To by itself is a trivial contraction, its time discounting due to γ <∞
still makes the composition map T̂ = T ◦ To contractionary, because, as Figure SA.1b

illustrates, the slope of T never exceeds unity. Hence, there exists a unique fixed point

V = T̂ (V ) by contraction mapping theorem.

SA.4 Costs and benefits of financial slack

Given a general cash flow profile from Section 4.1, posit the equilibrium (h, h) along

with the implied value functions (V, Vo). First, define dilution ratio as

D(h) ≡ (1− θ)
(
1− Vo(h)− h

V (h)− h

)
,

i.e., financiers’ rent (1− θ)
(
V (h)− (h− h)− Vo(h)

)
over net firm value post financing

V (h)−h.41 It is decreasing in h, and satisfies 1−θ = D(0) > D(h) > 0. Let D ≡ D(h).

To analyze lifetime firm value without a recursive HJB formulation, a couple of

stochastic processes must be specified. Define a counting process {nt}t≥0 by n0 = 0

and dnt = 1 (lims→t− hs = h). The process nt tracks how many times financing, and

41D and ownership retention x in Section 4.2 satisfyD(h)
(
V (h)−h

)
=
(
1−x(h)

)
V (h)−(h−h).
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hence dilution D, has occurred over the time interval (0, t]. Also define {τm}m∈N as

τm ≡ inf{t ≥ 0 | nt = m},

which is the associated increasing sequence of stopping times for mth financing; that is,

the first financing occurs at t = τ1 > 0, and so forth. Lastly, let τ be the stopping time

for terminal success arriving at a Poisson rate λ with payoff Π. Note that nτ counts the

entire lifetime financing rounds; in particular, λ > (=) 0 if and only if nτ
a.s.
< (

a.s.
= ) ∞.

Firm value V (h) can be decomposed as follows. Think of it equivalently as h +(
V (h)− h

)
where insiders, counterfactually, first receive h as one-time dividends and,

going forward, recognize both cash flow µ dt+ σ dBt (including terminal Π at λ) and

carry cost flow −φht dt as immediate utility flow scaled by their undiluted ownership

(1−D)nt . Given h0 = h,

V (h)− h = E0

[∫ τ

0
e−ρt(1−D)nt

((
µ− φht

)
dt+ σ dBt

)
+ e−ρτ (1−D)nτΠ

]

= E0

[∫ τ

0
e−ρt

(
µ− φht

)
dt+ e−ρτΠ

]
− E0

[
nτ∑
m=1

e−ρτmD
(
V (h)− h

)]
.

Inside the second expectation on the last line, both D and V (h) − h are constant in

equilibrium for all {τm}m∈N due to the time-invariant financing threshold h and funding

target h, and thus can be brought outside the unconditional expectation. Rearranging

yields

V (h)− h =
NPV− C
1 +D

, (SA.1)

where

NPV ≡ E0

[∫ τ

0
e−ρtµ dt+ e−ρτΠ

]
=
µ+ λΠ

ρ+ λ
, C ≡ E0

[∫ τ

0
e−ρtφht dt

]
≡ C + C∆

with C ≡ φ
ρ+λh and C∆ ≡ φE0

[∫ τ
0 e

−ρt(ht − h) dt
]
, and

D ≡ DE0

[
nτ∑
m=1

e−ρτm

]
.

As Equation (SA.1) shows, firm value in net V (h) − h, even at the target funding

capacity, is lower than the frictionless net present value of the business due to the carry

cost of financial slack C and dilution D. Insiders choose a financing strategy (h,∆h)

to maximize net firm value, balancing the reduction of dilution D against the carry

cost C. On one hand, both funding reserve h and financing amount ∆h = h− h lower

dilution D, by reducing its size D and frequency E0 [
∑nτ

m=1 e
−ρτm ], respectively. On the
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other hand, financial slack involves carry costs C = C + C∆, with C from the funding

reserve h and C∆ from the financing amount ∆h.

Financing is always optimally lumpy ∆h > 0 because zero financing amount ∆h→
0 fails to drive the size of dilution D down to zero, as Proposition 1 shows, and yet

blows its frequency E0 [
∑nτ

m=1 e
−ρτm ] up to infinity. In contrast, financing is not always

optimally early, as Corollary 1 shows. The funding reserve h, viewed as insiders’ one-

dimensional Markov strategy, involves a greater marginal carry cost φ
ρ+λ than financing

amount ∆h, because φh dt is a fixed flow cost whereas φ(ht − h) dt < φ∆h dt almost

always. As such, insiders do not employ a funding reserve if it fails to sufficiently

reduce the size of dilution D.

SA.5 Comparative statics in business parameters (Π, π)

To provide an alternative segue into investment, let us start by comparing the two

stylized examples from Section 4.1. Startups incur a constant loss −κ dt until success
arrives at Poisson rate λ > 0 giving a terminal payoff Π > κ

λ . Operating firms receive

volatile cash inflow π dt+ σ dBt. I vary Π in startups and π in operating firms.

(a) SU: future payoff (Π) (b) OF: average profit (π)

Figure SA.2: Future payoff versus current profitability

Horizontal axis: parameter being varied. Vertical line: equilibrium (h, h). SU: startup, OF: operating firm.
Fixed parameters are: common – (ρ, r) = (0.05, 0), (θ, γ) = (0.5, 1); SU – (κ, λ) = (2, 0.1); OF – σ = 2.

Figure SA.2 contrasts the comparative statics in future payoff Π versus profitability

π. Consider Figure SA.2a. Although startups’ cash flow −κ dt is fixed, insiders increase
financial slack when future payoff Π is higher. This is due to bargaining: a higher future

value increases the surplus from financing, and hence financiers can extract more rents.

Insiders, therefore, respond by increasing financial slack to mitigate dilution.

In contrast, Figure SA.2b shows that financial slack is non-monotonic in profitability

π. On one hand, it has the same effect as Π for startups in increasing firm value and

hence the size of dilution. This is manifested over the domain of π where financial slack

is upward-sloped. On the other hand, a higher profitability improves current cash flow,

and hence – given fixed volatility σ – makes losses less likely. Since dilution becomes

less and less likely to be triggered as π goes up, insiders decrease financial slack.

SA.5



These results give another motivation for adding investment, which reduces current

cash flow to improve future payoff. Investment gives rise to rich interactions between

dilution, current cash flow, and future prospect: (i) current cash flow decreases the

frequency of dilution, (ii) future payoff increases the size of dilution, and also (iii)

dilution – both in frequency and size – reduces insiders’ gains from investment.

SA.6 Comparative statics with investment

Comparative statics in (θ, γ). For comparative statics, I maintain all baseline pa-

rameters from Section 6.4 and only revert γ from 0 to 1. Figure SA.3a shows that even

minimal bargaining power for financiers substantially affects insiders’ optimal strategy.

A mere 1− θ = 0.05 still induces substantial financial slack of h ≈ 0.149, h ≈ 0.06 and

underinvestment on equilibrium path ranging between i∗−i ≈ 4.97% and i∗−ı ≈ 3.61%.

Obviously, 1− θ = 0 achieves the first-best h = h = 0, ı = i = i∗.

(a) Bargaining weight θ (b) Accessibility of alternative financing γ

(c) Productivity A (d) Cash flow volatility σ

Figure SA.3: Comparative statics

The black curves, in different styles, represent the optimal investment policy given internal funds on the
equilibrium path, bounded in domain by funding target h in the blue line segment and financing threshold h
in the red line segment. The flat lines in gray are the first-best investment. With SA.3d, the horizontal axis is
double in scale.

Figure SA.3b also delivers a broadly similar result to Section 5.4 (Figure 6), in

addition to Section 6 (Figure 8) with regard to financing threshold h. One key difference

with flexible investment choice is that firms may finance early even without access to

alternative financing. This is because (i) the ability to reduce investment and obtain

funds contingent on exclusion improves insiders’ reservation value and hence payoff
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from bargaining, but (ii) underinvestment and the resulting increase in cash inflow can

delay fund depletion only if funds are not already depleted.

Note that, with an intensive margin on investment unlike in Section 6, firms exhibit

notable underinvestment even with good financing access γ = 26. Across h ∈ [h, h],

firms underinvest between i∗ − i ≈ 3.61% and i∗ − ı ≈ 3.56%.

Comparative statics in (A, σ). Higher capital productivity A means that more of

firm value derives from accumulating capital stock for the future. Therefore, insiders

have more to lose from dilution of firm value. Financial slack and underinvestment

relative to the first-best, hence, increase in A, as Figure SA.3c displays.

Figure SA.3d shows how cash flow volatility increases financial slack and underin-

vestment. The key driver is the differential likelihood of rundowns in funds, and hence

of dilution, which prompts insiders to respond to higher volatility with greater slack

and less investment.

SA.7 Stochastic investment returns

Consider stochastic returns on investment. Concretely, consider a firm fluctuating

through a discrete Markov chain s ∈ {1, 2, 3, 4} across normal times A2 = A3 = 0.18,

a boom A1 = 1.2A2 and a bust A4 = 0.8A3. The two normal times are distinguished

in terms of their prospects. At A2, it is likelier to enter a boom soon, whereas at A3,

it is likelier to enter a bust. The following matrix summarizes the Markov chain:

From\To A1 A2 A3 A4

A1 = 0.216 · 0.3 0 0

A2 = 0.180 0.3 · 0.3 0

A3 = 0.180 0 0.3 · 0.3

A4 = 0.144 0 0 0.3 ·

(SA.2)

where elements are Poisson rates of transitioning from a state (in row) to another (in

column); the stationary distribution over state space {1, 2, 3, 4} is uniform. This setup

isolates the effect of future investment returns. Both A2 and A3 have the same current

revenue, but A2 merits increased investment due to greater expected returns.

To have a well-defined first-best solution, I increase ψ from 1.5 to 2 so that invest-

ment is harder to scale.42 I maintain the other baseline parameters, including γ = 1.

Figure SA.4 plots insider-optimal financing and investment strategies in states s ∈
{1, 2, 3, 4}. Table SA.1 compares the average per capital dynamics across the states

42Compared to the baseline case of constant A = 0.18, there is much greater upward growth
potential A1 = 0.216. If ψ is low, then A1 is an inordinately great time to substantially scale
up investment with small inefficiency, so that the first-best value blows up.
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Figure SA.4: Expected investment returns increase financial slack the most

The black curves, in different styles, represent the optimal investment policy given internal funds in each state
that occur on the equilibrium path, bounded in domain by funding target h

s
in the blue line segment and

financing threshold hs in the red line segment. The flat lines in gray are the first-best investment under each
state. The other parameters are ρ = 0.06, r = 0.05, θ = 0.5, γ = 1, δ = 0.1007, σ = 0.09, ψ = 2.

and against the first-best allocation using the ergodic distribution on h ∈ [hs, h
s
] for

each s = 1, 2, 3, 4, conditional on no Markov shift having occurred in the past – i.e.,

‘timeless.’ I now discuss underinvestment and demonstrate how it is mainly fluctuations

in expected – rather than realized – investment returns that shift financial slack.

(1) Underinvestment. As the bottom row of Table SA.1 shows, the average under-

investment at A2 relative to the first-best is approximately 2.06%, higher than that at

A3 of approximately 1.53% despite the same current revenue. With lucrative expected

returns, insiders underinvest more to avoid dilution because firm value is higher and

so is the size of dilution. With lower expected returns, they underinvest less because

firm value is lower and so is the size of dilution. Dilution concerns induce more under-

investment when firms expect higher capital productivity in a near future, despite the

convex adjustment cost that incentivizes anticipatory investment smoothing.

(2) Financial slack. Both the financing threshold and funding target (hs, h
s
) expand

most noticeably as future investment returns fluctuate. Insiders’ equilibrium value rises

– and so does the size of dilution – in anticipation of a boom, even as the current net

cash inflow
(
As − it −Ψ(it)

)
Kt dt declines due to greater investment. This is exactly

analogous to the combination, from the startup example in Section 5.4, of a higher

upside potential Π and a higher cash burn rate κ such that flow business value λΠ− κ
has not decreased (see Figure SA.2a). Each of these changes increases financial slack.

In contrast, realized changes in productivity, i.e., A2 → A1 and A3 → A4, lead

to smaller adjustments in financial slack. With A2 → A1, continuation value rises
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Boom Uptrend Downtrend Bust
Markov Chain
Productivity (As) A1 = 0.216 A2 = 0.180 A3 = 0.180 A4 = 0.144
Upward jump rate (As → As−1) - 0.3 0.3 0.3
Downward jump rate (As → As+1) 0.3 0.3 0.3 -
Stationary distribution 0.25 0.25 0.25 0.25

Financial Slack

Funding target (h
s
:= H

s
/K) 0.2307 0.2165 0.1925 0.1876

Financing threshold (hs := Hs/K) 0.1025 0.0967 0.0856 0.0856
Financing frequency 0.2311 0.192 0.1385 0.1361

Value, Dividend, Investment
Gross value (V s :=W s/K) 1.4815 1.3813 1.289 1.2046
Net value (V s − h) 1.2872 1.1957 1.12 1.0386
Dividend ratio (ds := Ds/K) 0.0783 0.0997 0.1403 0.1536
Investment (is := Is/K) 0.1416 0.0956 0.0593 0.0213
Avg. dividend (ρds/(ρ+ δ − is)) 0.2464 0.0919 0.083 0.0661

First-best
FB value (V ∗s :=W ∗s/K) 1.3307 1.2324 1.1492 1.0631
FB dividend ratio (d∗s := D∗s/K) 0.0233 0.0503 0.0998 0.1115
FB investment (i∗s := I∗s/K) 0.1654 0.1162 0.0746 0.0315
Underinvestment (i∗s − is) 0.0237 0.0206 0.0153 0.0103

Table SA.1: Financial slack and underinvestment

Financing frequency, gross/net value, and dividend ratio are computed as the arithmetic mean across the
conditional ergodic distribution, and investment as the ergodic geometric mean of gross capital growth 1+it−δ,
less 1− δ. ‘Average dividend’ is the flow average of the total discounted amount of expected lifetime dividend
per today’s capital, conditional on no Markov jump going forward.

but so does the current gross cash inflow As dt, so that net cash inflow does not

change substantially despite the increased investment. In addition, the rise in value is

dampened because there is no more upside potential in the future, only downside. The

combined effect is that dilution somewhat larger in size, but they still have similar net

cash inflow. With A3 → A4, similar effects are at play but in the opposite directions.43

In summary, with fluctuations in realized productivity, the effect of changing firm

43Indeed, a more standard AR(1)-type process for stationary productivity At generates more
stable financial slack under a fixed law of motion. Maintain the other parameters and let the
log of At be driven by persistent Brownian shocks with mean reversion:

d logAt =
1

ν
(µa − logAt) dt+

√
2/ν σa dZt,

where dZt is a standard Brownian motion independent of dBt. {At}t≥0 satisfies logAt ∼
N (µa, σ

2
a) and Corr(logAt, logAt+s) = e−

s
ν . Set σa = 0.1437, ν = 3.8772 to preserve the

autocovariance of the discrete Markov chain (SA.2), and µa ≈ −1.743 such that the median of
At is 0.175 < 0.18, adjusted against the greater upside potential P(At > 0.216) ≈ 0.07. Across a
95% confidence interval [A,A] with A ≡ eµa−1.96σa ≈ 0.133 < A4 and A ≡ eµa+1.96σa ≈ 0.230 >
A1, maximum variation in h(·), attained with a 73% rise in realized productivity A → A, is
0.0267. This is only 11% greater than how much it changes with a relatively moderate shift in
prospect as shown in Table SA.1. Financing threshold h(·) is even more stable, with maximum
variation of h(A)− h(A) ≈ 0.0089, a mere 80% of the change with A2 ↔ A3.
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(a) A worsening of investment returns

(b) An improvement of investment returns

Figure SA.5: Transition across fluctuating investment returns

Transitional average dynamics upon regime switching A2 ↔ A3, representing a shift in expected investment
returns with identical current productivity. Transition initiates from the original ergodic distribution.

value on the size of dilution is partially offset by the variation in current revenue that

helps lower the frequency of dilution, and also dampened by mean reversion. With

fluctuations in expected productivity, net cash flow varies directly and in the opposite

direction due to variation in investment despite the same revenue, and mean reversion

has less bite. Financial slack, therefore, is more sensitive to future investment returns.

(3) Financing and dividend payout. The above discussion motivates a stochastic

transitional dynamics exercise between A2 and A3 in particular, which Figure SA.5

illustrates. SA.5a starts with the timeless ergodic distribution on h ∈ [h2, h
2
] at A2

and feeds a foreseen negative shift in expected investment returns A2 → A3 at t = 0.

First, the shift freezes financing. Firms with ht near h
2 and hence originally about to

finance shortly now wait more until ht → h3 < h2 to raise cash. Moreover, the lower

investment despite the same current average revenue A3 = A2 and volatility σ makes

cash rundowns less likely so that even after the freeze is over, financing is less frequent;

firms retain cash instead of investing it given lower investment returns.

Second, the worsening of investment returns prompts an immediate surge in divi-
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dend. Firms with ht ∈ (h
3
, h

2
] pay out ht − h

3
in dividend on impact. And the surge

is widespread, since the ergodic distribution of ht conditional on A
2 is heavily concen-

trated near h: P2(h
3
< ht ≤ h

2
) ≈ 0.49. The upward concentration arises because (1)

ht → h prompts a jump to h but ht → h remains nearby at the reflection boundary,

and (2) additional cash drift is generated from lower investment rates as ht runs down

to h. As expected, the opposite shift A3 to A2, in Figure SA.5b, generates a financing

surge and a widespread freeze in dividend.44

In sum, an improvement/worsening of investment returns given the same current

productivity generates a surge in financing/dividend payout and a temporary freeze in

dividend payout/financing. As an aside, firms are expediting financing and delaying

dividend when investment opportunities improve, not because they are constrained in

funds for investment, but because the size and the frequency of dilution have risen.

Figure SA.6: Financial slack and underinvestment across financial cycle

Other parameters are ρ = 0.06, r = 0.05, θ = 0.5, A = 0.18, δ = 0.1007, σ = 0.09, ψ = 1.5. The flat line in
gray is the first-best. The Markov chain is again given by (SA.2), with γs replacing As.

SA.8 Anticipatory effects of financing outlook

How do firms react when their financing outlook fluctuates? In models with stochastic

‘fixed’ transaction costs of financing, e.g., Bolton et al. (2013), firms would raise funds

earlier when they expect a rise in fixed cost, than when they expect a drop. Thus, a

pessimistic shift in financing outlook should prompt a temporary surge in financing.

In this paper, financing threshold may decrease when firms expect alternative fi-

nancing γ to become less accessible, h2 ≈ 0.0908 > 0.0867 ≈ h3, as Figure SA.6 shows.

44Dividend payout being reported here is per capital. Due to the differential capital buildup,
the actual time-averaged dividend payout amount per today ’s capital is indeed procyclical, as
reported in Table SA.1. In sum, the model predicts that dividend payout, while procyclical,
undergoes short-lived countercyclical surge and freeze when future prospect fluctuates.
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SA.9 Productivity during crisis

Motivated by Section 6.5, I conduct a business fluctuation exercise co-varying (γ, ϕ,A),

where ϕ ≥ 0 is the reversibility parameter: Ψ(i) ≡ ψ
1i≥0+ϕ1i<0

i2

2 . There are three states

s ∈ {0, 1, 2} with the Markov chain in Poisson rates:

From\To (γs, ϕs, As) s = 0 s = 1 s = 2

Normal: s = 0 (1, 0.5, 0.18) · 0.1 0.1

Crisis 1: s = 1 (0, 0, 0.17) 0.5 · 0

Crisis 2: s = 2 (0, 0, 0.16) 0.5 0 ·

During the ‘normal’ time s = 0, (γ0, ϕ0, A0) = (1, 0.5, 0.18). Both crises s ∈ {1, 2}
exhibit perfect irreversibility and an absence of alternative financing γs = ϕs = 0 as

well as a differential drop in productivity A0 = 0.18 > A1 = 0.17 > A2 = 0.16.

A crisis featuring both investment irreversibility and lack of alternative financing

has vastly different effects depending on productivity. With low productivityA2 = 0.16,

excluded insiders cannot easily implement fallback underinvestment, and hence firms

delay financing until funds are depleted h2 = 0. Dilution thus amplifies from 0.001 in

s = 0 to 0.553 in s = 2, and financing gets much lumpier ∆h2 = h
2 ≈ 0.238 > 0.111 ≈

∆h0. Financing all but freezes, with one in 2,000 firms raising funds in a unit period.

(a) Financial slack and investment (b) Transitional financing

Figure SA.7: Equilibrium and crisis transition

Higher productivity A1 = 0.17 > 0.6 = A2 induces a different pattern. The upward-

concentrated fallback underinvestment becomes easier for excluded insiders to imple-

ment. Firms, therefore, keep financing early h1 ≈ 0.096. Dilution remains similarly

negligible 0.0017, and financing amount rises only moderately ∆h1 ≈ 0.140 > 0.111 ≈
∆h0. Financing occurs with moderate (though reduced) frequency; on average, one in

25 firms (down from one in seven) finances in a unit period.

In sum, small variations in productivity may induce drastically different financing

dynamics when financial market depth dries up and investment irreversibility peaks.
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Supplemental Appendix B Algorithms

SB.1 Numerical algorithm for flexible investment

I explain the numerical algorithm for the setup in Section 6 with convex adjustment

cost of investment – the algorithm for Section 6.1 with lumpy investment is a simpler

adaptation of it. Section SB.1.1 sets up the main algorithm for the case without fluctu-

ations in parameters. I then introduce Markov chains, both discrete and continuous, in

Section SB.1.2. Last, Section SB.1.3 describes how to solve the model under investment

irreversibility, as introduced in Section 6.5 and Supplemental Appendix SA.9.

SB.1.1 Main algorithm

Formulation. Start by setting some H > 0. It should be higher than h
o
, the funding

target under exclusion, which is higher than h but typically by a slight margin. V on

[0, H] satisfies:

h ≥ h =⇒ 0 = Vhh(h) (∵ Vh = 1 on [h,∞)) (SB.1)

h ∈ [h, h] =⇒ ρV (h)− rhVh(h) = max
i

(
A− i−Ψ(i)

)
Vh +

(
i− δ

)(
V − hVh

)
+

1

2
σ2Vhh

=

(
A+

1

2ψ
+

(
δ +

1

ψ

)
h

)
Vh −

(
δ +

1

ψ

)
V +

1

2ψ

(V − hVh)2

Vh
+

1

2
σ2Vhh

(SB.2)

h ≤ h =⇒ V (h) = θ
(
V (H)−H + h

)
+ (1− θ)V o(h). (SB.3)

Note that (SB.1) implies V (H)−H = V (h)−h, which is being substituted into (SB.3).

Next, V o on [0, H] satisfies:

h ≥ ho =⇒ 0 = V o
hh(h) (∵ V o

h = 1 on [h
o
,∞)) (SB.4)

h ∈ [0, h
o
] =⇒ ρV o(h)− rhV o

h (h)

=

(
A+

1

2ψ
+

(
δ +

1

ψ

)
h

)
V o
h −

(
δ +

1

ψ

)
V o +

1

2ψ

(V o − hV o
h )

2

V o
h

+
1

2
σ2V o

hh

+ γ
(
V (h)− V o(h)

)
. (SB.5)

For ease of notation, define

α ≡ ρ+ δ +
1

ψ
, β(h) ≡ A+

1

2ψ
+

(
r + δ +

1

ψ

)
h, ξ(v, vh, h) ≡

1

2ψ

(v − hvh)2

vh
.

The five piecewise equalities above – (SB.1) through (SB.5) – switch to strict inequali-

ties when evaluated outside the respective intervals, with left-hand sides being higher.
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Therefore, these can be summarized as follows: for h ∈ [0, H],

αV (h)− β(h)Vh(h)−
1

2
σ2Vhh(h) = NL(V, V o, h)

≡ max

{
αV (h)− β(h)Vh(h), ξ

(
V (h), Vh(h), h

)
,

α
(
θ
(
V (H)−H + h

)
+ (1− θ)V o(h)

)
− β(h)Vh(h)−

1

2
σ2Vhh(h)

}
, (SB.6)

(α+ γ)V o(h)− β(h)V o
h (h)−

1

2
σ2V o

hh(h) = NLo(V, V o, h)

≡ max

{
(α+ γ)V o(h)− β(h)V o

h (h), ξ
(
V o(h), V o

h (h), h
)
+ γV (h)

}
. (SB.7)

Both NL and NLo capture the nonlinear components of the pair of differential equa-

tions. In the expression for NL, the first element gives the maximum on [h,H], the

second on [h, h] and the last on [0, h], and similarly in NLo given ho = 0.45 Last, the

boundary conditions are:

V (0) = θ
(
V (H)−H

)
, Vh(H) = 1 (SB.8)

V o(0) = 0, V o
h (H) = 1. (SB.9)

Discretization and linearization. Let us discretize the fund space [0,H] into Nh

evenly spaced grids, and let ∆H ≡ H
Nh−1 the grid size. For now, let i ∈ {1, 2, . . . , Nh}

index [0, H] increasingly, and denote h ∈ [0, H]Nh as the column vector discretiz-

ing [0, H], such that h(0) = 0, h(Nh) = H. Posit V0, V
o
0 ∈ RNh as column vectors

representing conjectured approximate value functions under inclusion and exclusion,

respectively. Let W0 ∈ R2Nh with

W0 ≡

(
V0

V o
0

)
,

represent the stacked value functions. i ∈ {Nh + 1, . . . , 2Nh} represents funds under

exclusion.

The core of the algorithm is to summarize the left-hand sides of the combined HJB

equations (SB.6), (SB.7) as well as the boundary conditions (SB.8), (SB.9) into a single

2Nh × 2Nh sparse matrix M(W ), which depends on the true stacked value function

45The first elements of NL and NLo make use of the fact that Vhh, V
o
hh ≤ 0 with the equality if

and only if h ≥ h, h ≥ ho, respectively. The second elements are the standard HJB equations.
The third element in NL derives from V ≥ θ

(
V (H)−H + h

)
+ (1− θ)V o, with the equality if

and only if h ≤ h.
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W , such that M(W ) ·W = NL(W ), where NL is essentially a stack of NL and NLo

but with some additional adjustments at the respective end rows, to be specified soon.

M should depend on W exclusively due to the upwinding method described shortly. I

will start with some initial W0 and use a linear solver to obtain W1 such that

W1 −W0

∆t
+M(W0) ·W1 = NL(W0).

Above, the first term on the left-hand side is the pseudo-time derivative to enable

efficient convergence, with ∆t ∈ R++. Until W1 is sufficiently close to W0, update W0

and repeat.

In principle, M(·) is a mapping from R2Nh to R2Nh×2Nh , but the sparsity substan-

tially reduces its rank. This mapping should capture everything linear in both the

combined HJB equations, including the linear differential terms, and the boundary

conditions.

Upwinding the derivatives. I will approximate the combined HJB equations (SB.6),

(SB.7) for the interior rows of h only, i.e., i = 2, 3, . . . , Nh−1. The endpoints i ∈ {1, Nh}
will be reserved for the boundary conditions (SB.8), (SB.9). For each of the interior

rows i ∈ {2, 3, . . . , Nh − 1}, I approximate the first and second derivatives of a given

approximated function V as follows: define

∆f
h ≡

(
0,− 1

∆H
,

1

∆H

)
, ∆b

h ≡
(
− 1

∆H
,

1

∆H
, 0

)
,

∆c
h ≡

(
− 1

2∆H
, 0,

1

2∆H

)
, ∆2

h ≡
(

1

∆H2
,− 2

∆H2
,

1

∆H2

)
.

Then, letting V̂ (i) ≡
(
V (i − 1), V (i), V (i + 1)

)′
, ∆f

h · V̂ (i) denotes the forward first

difference, ∆b
h · V̂ (i) the backward first difference, ∆c

h · V̂ (i) the centered first difference,

and ∆2
h · V̂ (i) the second difference, all in h.

I follow the standard numerical method of ‘upwinding’ where the forward/backward

difference is used in approximating the first derivative with a positive/negative drift.

Determining the sign of the drift in cash flow, however, is somewhat tricky since it

depends on which region – [0, h], (h, h] or (h,H] under inclusion and [0, h
o
] or (h

o
, H]

under exclusion – the current internal funds level belongs to. Determining the region is

equivalent to determining which element is the maximum in NL and NLo in Equations

(SB.6) and (SB.7), respectievly, whose elements all involve first derivatives.

Therefore, I employ the centered first difference to determine the regions and then

use them to implement the upwinding. Given V0 and V o
0 , define ten row indicator

vectors – fm, bm ∈ {0, 1}Nh for m = 1, 2, 3 and fom, b
o
m ∈ {0, 1}Nh for m = 1, 2 –

such that i ∈ {1, Nh} =⇒ ∀m, fm(i) = bm(i) = fom(i) = bom(i) = 0 and for i ∈
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{2, 3, . . . , Nh − 1}, f1(i) = fo1 (i) = 1,

f2(i) ≡ 1

(
A− E

(
V0(i),∆

c
h · V̂0(i), h(i)

)
+
(
r + δ − I

(
V0(i),∆

c
h · V̂0(i), h(i)

))
h(i) > 0

)
,

fo2 (i) ≡ 1

(
A− E

(
V o
0 (i),∆

c
h · V̂ o

0 (i), h(i)
)
+
(
r + δ − I

(
V o
0 (i),∆

c
h · V̂ o

0 (i), h(i)
))
h(i) > 0

)
,

f3(i) ≡ 1

(
A− E

(
V o
0 (i)− θ

(
V0(Nh)−H + h(i)

)
,∆c

h · V̂0(i)− θ, h(i)
)

+
(
r + δ − I

(
V o
0 (i)− θ

(
V0(Nh)−H + h(i)

)
,∆c

h · V̂0(i)− θ, h(i)
)
h(i)

)
> 0

)
,

and bm(i) = 1− fm(i), bom(i) = 1− fom(i) for all m. Above, I and E denote optimized

values of gross investment i46 and total investment expense i+Ψ(i), respectively, given

as

I(v, vh, h) =
1

ψ

(
v

vh
− h− 1

)
, E(v, vh, h) =

1

2ψ

((
v − hvh
vh

)2

− 1

)
.

As can be inferred from f1 = fo1 = 1, I use forward differences on (h,H] and (h
o
, H].

Let

∆hm(i) ≡ fm(i)∆f
h + bm(i)∆

b
h, ∆hmo(i) ≡ fom(i)∆

f
h + bom(i)∆

b
h.

Let m∗(i) ∈ {1, 2, 3} and mo∗(i) ∈ {1, 2} index the maximum, respectively in the sets{
αV0(i)− β(h(i))∆h1(i) · V̂0(i), ξ

(
V0(i),∆h2(i) · V̂0(i), h(i)

)
, α
(
θ(V0(Nh)−H + h(i))

+ (1− θ)V o
0 (i)

)
− β(h(i))∆h3(i) · V̂0(i)−

1

2
σ2∆2

h · V̂0(i)

}
, (SB.10){

(α+ γ)V o
0 (i)− β(h(i))∆h1o(i) · V̂ o

0 (i), ξ
(
V o
0 (i),∆h2o(i) · V̂ o

0 (i), h(i)
)
+ γV0(i)

}
.

(SB.11)

Last, let f(i) ≡ fm∗(i)(i), f
o(i) ≡ fomo∗(i)(i), b(i) ≡ 1− f(i), bo(i) ≡ 1− fo(i), and

∆h(i) ≡ f(i)∆f
h + b(i)∆b

h, ∆o
h(i) ≡ fo(i)∆

f
h + bo(i)∆b

h.

These three-dimensional row vectors ∆h(i), ∆o
h(i) ∈ R3 implement the upwinding for

first differences in the construction of M(·), to which I now transition.

Constructing the matrix. As a reminder, M(W0) is a 2Nh × 2Nh sparse matrix,

46I and δ enter the drift in cash flow because h is internal funds per capital.
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because W0 is a stacked vector of V0, V
o
0 . For each of i = 2, 3, . . . , Nh − 1 rows, let

M(i, i− 1 : i+ 1 | W0) ≡ (0, α, 0)− β(h(i))∆h(i)−
1

2
σ2∆2

h,

where M(i, i− 1 : i+ 1) denotes the ith row from the (i− 1)th column to the (i+ 1)th

column, to account for the left-hand side of Equation (SB.6). Similarly, for each of

(Nh + i)th rows with i = 2, . . . , Nh − 1, implement the left-hand side of (SB.7) by

M(Nh + i,Nh + i− 1 : Nh + i+ 1 | W0) ≡ (0, α+ γ, 0)− β(h(i))∆o
h(i)−

1

2
σ2∆2

h.

Next, construct the ‘nonlinear’ column vector NL(W0) ∈ R2Nh as follows: for each

of i = 2, 3, . . . , Nh − 1 rows, NL(i | W0) is the maximum in the set (SB.10) and

NL(Nh+ i | W0) in the set (SB.11). The rows i = 1, Nh, Nh+1, 2Nh will be separately

specified right below.

Last, the boundary conditions (SB.8) and (SB.9) are implemented as:

M(1, 1 | W0) ≡ α, M(1, Nh | W0) ≡ −θ
(

1

∆t
+ α

)
, NL(1 | W0) ≡ −θ

(
1

∆t
+ α

)
H,

M(Nh, Nh − 1 | W0) ≡ −
(

1

∆t
+ α

)
, M(Nh, Nh | W0) ≡ α,

NL(Nh | W0) ≡
(

1

∆t
+ α

)
∆H,

M(Nh + 1, Nh + 1 | W0) ≡ 0, NL(Nh + 1 | W0) ≡ 0,

M(2Nh, 2Nh − 1 | W0) ≡ −
(

1

∆t
+ α+ γ

)
, M(2Nh, 2Nh | W0) ≡ α+ γ,

NL(2Nh | W0) ≡
(

1

∆t
+ α+ γ

)
∆H.

Any unspecified element of M(W0) is set to zero, making it highly sparse.

Iteration to solution. Posit H. Start with some initial guess V0, V
o
0 , and stack them

into W0. Obtain W1 that solves(
1

∆t
I2Nh

+M(W0)

)
·W1 =

1

∆t
W0 +NL(W0),

where I2Nh
is the 2Nh× 2Nh identity matrix, also highly sparse. If W1 is close enough

to W0, stop; V ≡ W1(1 : Nh) and V o ≡ W1(Nh + 1 : 2Nh). Otherwise, update

W0 ≡ aW1 + (1− a)W0 for some weight a ∈ (0, 1] and repeat.

If H is set too high, the algorithm might converge too slowly and the solution

becomes unnecessarily coarse on [0, h]. On the other hand, if H is too low, then

possibly H < h
o
, in which case the algorithm fails. Therefore, I run the algorithm
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twice, an initializer and a verifier. During initialization, I use an adequate fraction

(say 0.2) of the first-best value V ∗ as the initial H and use a high error tolerance. If

convergence fails, I raise the initial H. If it succeeds, I choose a new H to be only

slightly higher than h
o
and run the verifier with a low error tolerance.

SB.1.2 Fluctuations in parameters

Stacked value. Let Ns denote the number of Markov states. For a continuous Markov

chain, Ns is the number of grids in state-space discretization. I use s ∈ {1, 2, . . . , Ns}
to index the Markov states. Given

(
V0(ih, s), V

o
0 (ih, s)

)
for (ih, s) ∈ {1, . . . , Nh} ×

{1, . . . , Ns}, define

W0 ≡
(
V0(:, 1)

′ . . . V0(:, Ns)
′ V o

0 (:, 1)
′ . . . V o

0 (:, Ns)
′
)′
∈ R2NhNs

as their stacked column vector. i ∈ {1, . . . , 2NhNs} now jointly indexes (ih, s) and

inclusion/exclusion. The mapping M : R2NhNs → R2NhNs×2NhNs will be defined in a

fashion overall identical to Section SB.1.1 for each of the Nh×Nh blocks corresponding

to s ∈ {1, 2, . . . , Ns} along the main diagonal M
(
(s − 1)Nh + 1 : sNh, (s − 1)Nh + 1 :

sNh | W0

)
. There will be, however, an additional sparse matrix for the Markov chain

and some changes to NL, NLo.

Discrete Markov chain. Consider a Markov chain in Poisson arrival rates of tran-

sition given as 
−λ1 λ12 . . . λ1Ns

λ21 −λ2 . . . λ2Ns

. . . . . . . . . . . .

λNs
1 λNs

2 . . . −λNs

 ,

where λss′ ≥ 0 is the Poisson rate of transition at s to s′ ̸= s, and λs ≡
∑

s′ ̸=s λ
s
s′ .

Modify the combined HJB equations (SB.6) and (SB.7): for s ∈ {1, . . . , Ns},

(α(s) + λs)V (h, s)− β(h, s)Vh(h, s)−
1

2
σ2Vhh(h, s)−

∑
s′ ̸=s

λss′V (h, s′) = NL(V, V o, h, s)

≡ max
{
(α(s) + λs)V (h, s)− β(h, s)Vh(h, s)−

∑
s′ ̸=s

λss′V (h, s′), ξ
(
V (h, s), Vh(h, s), h, s

)
,

(α(s) + λs)
(
θ(s)

(
V (H, s)−H + h

)
+ (1− θ(s))V o(h, s)

)
− β(h, s)Vh(h, s)

− 1

2
σ2Vhh(h, s)−

∑
s′ ̸=s

λss′V (h, s′)
}
, (SB.12)
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(α(s) + λs + γ(s))V o(h, s)− β(h, s)V o
h (h, s)−

1

2
σ2V o

hh(h)−
∑
s′ ̸=s

λss′V
o(h, s′)

= NLo(V, V o, h, s) ≡ max
{
(α(s) + λs + γ(s))V o(h, s)− β(h, s)V o

h (h, s)

−
∑
s′ ̸=s

λss′V
o(h, s′), ξ

(
V o(h, s), V o

h (h, s), h, s
)
+ γ(s)V (h)

}
. (SB.13)

The dependence of α, β, θ, γ, ξ on s captures the fluctuations in parameters.

Define a Markov chain matrix for the entire (ih, s) space by

Λ ≡


−λ1ĨNh

λ12ĨNh
. . . λ1Ns

ĨNh

λ21ĨNh
−λ2ĨNh

. . . λ2Ns
ĨNh

. . . . . . . . . . . .

λNs
1 ĨNh

λNs
2 ĨNh

. . . −λNs ĨNh

 ∈ RNhNs×NhNs ,

where ĨNh
is the Nh × Nh identity matrix but with the first and last main diagonal

elements replaced with zero; the first and the last rows in each block are preserved

for the boundary conditions. Proceed to extend Λ to both inclusion and exclusion by

defining

Λ ≡

(
Λ 0

0 Λ

)
∈ R2NhNs×2NhNs .

The zero off-diagonal blocks indicate that Λ is orthogonal to re-inclusion upon γ.

The construction of each main diagonal block of M(W0) – i.e., M
(
(s − 1)Nh +

1 : sNh, (s − 1)Nh + 1 : sNh | W0

)
– is unchanged, both for the interior rows

i ∈ {(s−1)Nh+2, . . . , sNh−1} that implement the combined HJB (SB.12), (SB.13)47

and for the boundaries i ∈ {(s − 1)Nh + 1, sNh} that implement the same boundary

conditions. NL(W0) is adjusted slightly for the interior, following the modified defi-

nition of NL,NLo in (SB.12), (SB.13). Once M(·), NL(·) are constructed, iteratively

solve (
1

∆t
I2NhNs +M(W0)−Λ

)
·W1 =

1

∆t
W0 +NL(W0).

Continuous Markov chain. Let st follow dst = µs(st) dt + σs(st) dZt. Discretize

the state space into Ns grids with size ∆S. Let s ∈ {1, 2, . . . , Ns} index the state space

increasingly. The above law of motion is ‘discretized’ as a Markov chain:

µs(s) ≥ 0 =⇒ λss−1 =
σs(s)

2

2∆S2
, λss+1 =

µs(s)

∆S
+
σs(s)

2

2∆S2
,

µs(s) < 0 =⇒ λss−1 = −
µs(s)

∆S
+
σs(s)

2

2∆S2
, λss+1 =

σs(s)
2

2∆S2
.

47The maximizing indices m∗,mo∗ are based on the modified NL and NLo in (SB.12), (SB.13).
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As for the endpoints s ∈ {1, Ns}, mean reversion will generally allow upwinding of

the first-order terms ±µs(s)
∆S . The second-order terms, however, cannot be correctly

computed, as they go outside the grid. I therefore use W0 to compute second as well

as third finite differences at s ∈ {2, Ns − 1} and use them to linearly approximate the

endpoint second derivatives.48

Once the discretized Markov chain is set up, follow the same procedure as above.

SB.1.3 Investment irreversibility

The algorithm remains mostly the same and is modified only as follows. First, whenever
1
ψ appears in the above algorithm, multiply it by 1+(ϕ−1) ·1( V0

∆h·V0 −h < 1); use V o
0 ,

∆o
h instead of V0, ∆h when appropriate. The indicator function tracks whether the firm

divests. Second, move all terms involving this modified expression to the inside of NL

instead of M , as investment versus divestment can make the system highly nonlinear.

SB.2 Closed-form solution for exogenous cash flow

Sections 5.2 and 5.3 inform a general procedure for analytically solving the equilibrium

for exogenous cash flow models in Section 4 when the HJB equation (7) admits an an-

alytic solution for value functions, which requires r = 0. By Lemma 2, the equilibrium

is fully characterized by a pair (h, h), 0 ≤ h < h. The procedure is as below:

1. In all cases, V ′(h) = 1, and if σ > 0, then V ′′(h) = 0.

2. Solve the model with γ = 0. By Corollary 1, h = 0, and h is implicitly defined

by V (0) = θ
(
V (h)− h

)
.

3. For γ > 0, first determine whether h = 0 or h > 0. This can be done as follows:

(i) posit the value of h obtained in Step 2, and (ii) evaluate Inequality (13). If

h = 0, assign to h the value obtained in Step 2.

4. If h > 0, then use the following conditions to implicitly determine (h, h):

(a) Stationary Recursion: V (h)− V (h) =
(
1 + φ

γ

)
∆h,

(b) Threshold Indifference: for h ∈ [0, h],

ρVo(h)− rhV ′
o(h) = γθ

(
V (h)− h+ h− Vo(h)

)
+ Λ(Vo)(h) +H(Vo)(h),

with boundary conditions Vo(0) = 0, G(h) = 0, where G is defined in Ap-

pendix A.2, and

(c) Smooth Pasting: V ′(h) = θ + (1− θ)V ′
o(h).

49

48At the endpoints, the ‘discrete jump’ interpretation might not hold: the algorithm still works.
49If σ = 0, then one of the three conditions are redundant.
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Supplemental Appendix C Other Derivations

Here, I go through analytic solutions to the startup and operating firm examples.

The main purpose is to formally prove comparative statics in business parameters; its

graphical illustration in Supplemental Appendix SA.5 has provided another motivation

introducing investment choice into the framework in Section 6. An analytic solution

to the HJB equation requires that the internal yield be zero r = 0. Note, as an aside,

that regardless of the existence of an analytic solution for the value function, all the

formal results in the main article are valid.

Proofs are in Supplemental Appendices SC.3 and SC.4.

SC.1 Solving startup equilibrium

The business incurs a fixed flow expense κ dt, κ > 0, until success arrives at Poisson rate

λ > 0 upon which the business terminates with one-time payoff Π > 0. As discussed,

assume r = 0. Let us reiterate the first part of Assumption 1 as a reference.

Assumption SC.1.1 (Positive net present value). λΠ > κ.

Then, V on (h, h) satisfies the following ODE:

ρV (h) = λ
(
Π+ h− V (h)

)
− κV ′(h)

=⇒ V (h) = −ce−
ρ+λ
κ
h +

λ

ρ+ λ

(
Π+ h− κ

ρ+ λ

)
,

for some c ∈ R. In addition, since V ′(h) = 1, we have

V (h) =
1

ρ+ λ

(
λ
(
Π+ h

)
− κ

ρ+ λ

(
λ+ ρe

ρ+λ
κ

(h−h)
))

, (SC.1)

V (h) =
1

ρ+ λ

(
λ
(
Π+ h

)
− κ

)
. (SC.2)

SC.1.1 Baseline: no re-inclusion

First consider γ = 0. Since h = 0 by Corollary 1, the equilibrium – just h in this case

– is implicitly defined by the stationary recursion as follows:

V (0) = x(0)V (h) = θ(V (h)− h)

⇐⇒ θρ
(
(ρ+ λ)h+ κ

)
+ (1− θ)λ

(
(ρ+ λ)Π− κ

)
= ρκ exp

(
ρ+ λ

κ
h

)
. (SC.3)
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In the first line, Vo(0) = 0 is used. Note that the solution to Equation SC.3 is positive

if and only if Assumption SC.1.1 holds.

With Equation (SC.3), comparative statics is straightforward.

Proposition SC.1.1 (Comparative statics – Startups without re-inclusion).

∂h

∂θ
= −1

ρ

λΠ− κ− ρh

exp
(
ρ+λ
κ h

)
− θ

< 0, lim
θ→0

h <
λΠ− κ

ρ
, lim
θ→1

h = 0, and lim
θ→1

∂h

∂θ
= −∞,

(SC.4)

∂h

∂Π
=
λ

ρ

1− θ

exp
(
ρ+λ
κ h

)
− θ

> 0, (SC.5)

lim
λ→κ/Π

h = lim
λ→∞

h = 0. (SC.6)

SC.1.2 General comparative statics

Consider the general case of γ ≥ 0. Inequality (13) translates into: h > 0 if and only if

ρh <
(1− θ)γ

ρ+ λ+ (1− θ)γ
(λΠ− κ). (SC.7)

By Section SB.2, the following result is obtained.

Proposition SC.1.2 (Startup financing). Denote

η ≡ (1− θ)γ
ρ+ λ+ (1− θ)γ

, ξ ≡ λΠ− κ
ρ

.

The equilibrium is characterized by h = 0 and h implicitly defined by Equation (SC.3)

if

θρ
(
(ρ+ λ)ηξ + κ

)
+ (1− θ)λ

(
(ρ+ λ)Π− κ

)
≥ ρκ exp

(
ρ+ λ

κ
ηξ

)
. (SC.8)

If the inequality is strictly reversed, then h = h − ∆h > 0 and h > ∆h is implicitly

defined by

1− θ
ρ+ λ

(
(ρ+ λ+ θγ)λΠ− θργ

(
h+

κ

ρ+ λ+ θγ

)
− (λ+ θγ)κ

)
= ρ

(
ρ+ λ+ γ

γ
∆h+ (1− θ) κ

ρ+ λ+ θγ

)
exp

(
ρ+ λ+ θγ

κ
(h−∆h)

)
,

(SC.9)

where ∆h = h− h > 0 is given by

1 +
ρ+ λ

κ

(
1 +

ρ+ λ

γ

)
∆h = exp

(
ρ+ λ

κ
∆h

)
. (SC.10)
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Proposition SC.1.3 (Comparative statics – startups). h strictly increases in Π.

When h > 0, h strictly increases in Π and ∆h is constant in Π and strictly decreasing

in λ. Last, h, h and ∆h converge to zero as either (i) Π goes to κ/λ or (ii) λ goes to

either κ/Π or ∞.

Proof. Immediate from Proposition SC.1.2.

Proposition SC.1.4 (Breakeven re-inclusion – Startups). γ strictly decreases in Π,

and converges to zero as Π goes to ∞. It goes to ∞ as Π goes down to κ/λ, the lower

bound in Assumption SC.1.1.

SC.2 Solving operating firm equilibrium

The second example involves a fixed average profit but with volatility. That is, the

underlying cash flow of the business is captured by

π dt+ σ dBt,

with π, σ2 > 0, where Bt is a standard Brownian motion. Again, assume r = 0 for

simplicity.

Note that V on (h, h) satisfies the following ODE:

ρV (h) = πV ′(h) +
1

2
σ2V ′′(h).

In addition, since insiders will receive dividends at ht = h such that h becomes a

reflection boundary, both smooth pasting and super contact conditions must hold at

h, i.e., V ′(h) = 1, V ′′(h) = 0. Therefore,

V (h) =
1

Φ + ϕ

(
Φ

ϕ
e−ϕ(h−h) − ϕ

Φ
eΦ(h−h)

)
, (SC.11)

V (h) =
π

ρ
, (SC.12)

where Φ ≡ (
√
π2 + 2ρσ2 + π)/σ2 and ϕ ≡ (

√
π2 + 2ρσ2 − π)/σ2.

SC.2.1 Baseline: no re-inclusion

First suppose that γ = 0. Then, again by Corollary 1, h = 0 and h is implicitly defined

by V (0) = θ
(
V (h)− h

)
, which is simply

θ

(
π

ρ
− h
)

=
1

Φ + ϕ

(
Φ

ϕ
e−ϕh − ϕ

Φ
eΦh
)
. (SC.13)
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From the above, we can derive comparative statics.

Proposition SC.2.1 (Comparative statics – Operating firms without re-inclusion).

∂h

∂θ
= −1

ρ

π − ρh
Φ

Φ+ϕe
−ϕh + ϕ

Φ+ϕe
Φh − θ

< 0,

lim
θ→0

h <
π

ρ
, lim
θ→1

h = 0, and lim
θ→1

∂h

∂θ
= −∞, (SC.14)

∂h

∂σ2
=

ρ

π2 + 2ρσ2

h
√
π2 + 2ρσ2

(
eΦh + e−ϕh

)
− σ2

(
eΦh − e−ϕh

)
√
π2 + 2ρσ2

(
eΦh + e−ϕh − 2θ

)
− π

(
eΦh − e−ϕh

) > 0,

lim
σ2→0

h = 0, lim
σ2→∞

h =
π

ρ
, lim
σ2→0

∂h

∂σ2
=∞, and lim

σ2→∞

∂h

∂σ2
= 0,

(SC.15)

lim
π→0

h = lim
π→∞

h = 0. (SC.16)

SC.2.2 General comparative statics

Now consider γ ≥ 0. Let us first evaluate Inequality (13): h > 0 if and only if

ρh <
(1− θ)γ

ρ+ (1− θ)γ
π. (SC.17)

Proposition SC.2.2 (Operating firm financing). Denote

η ≡ (1− θ)γ
ρ+ (1− θ)γ

, ξ ≡ π

ρ
.

The equilibrium is characterized by h = 0 and h implicitly defined by Equation (SC.13)

if

θ(1− η)ξ ≤ 1

Φ + ϕ

(
Φ

ϕ
exp (−ϕηξ)− ϕ

Φ
exp (Φηξ)

)
. (SC.18)

If the inequality is strictly reversed, then h = h − ∆h > 0 and h > ∆h is implicitly

defined by(
π

ρ+ θγ
− 1

1− θ

(
1 +

ρ

γ

)
∆h

)
ϕo exp

(
ϕo(h−∆h)

)
+Φo exp

(
−Φo(h−∆h)

)
exp
(
ϕo(h−∆h)

)
− exp

(
−Φo(h−∆h)

)
+ θ (Φo + ϕo)

γ

ρ

((
1 +

ρ

ρ+ θγ

)
π

ρ
− h
)

exp
(
−2π(h−∆h)/σ2

)
exp
(
ϕo(h−∆h)

)
− exp

(
−Φo(h−∆h)

)
=

ρ+ θγ

(1− θ)ρ

(
ϕ

(
π

ρ
−
(
1 +

ρ

γ

)
∆h

)
+
ϕ

Φ
exp
(
Φ∆h

))
− θ

1− θ

(
1 +

γ

ρ

)
,

(SC.19)
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where

Φo ≡ (
√
π2 + 2(ρ+ θγ)σ2 + π)/σ2, ϕo ≡ (

√
π2 + 2(ρ+ θγ)σ2 − π)/σ2

and ∆h = h− h > 0 is given by

π

ρ
−
(
1 +

ρ

γ

)
∆h =

1

Φ + ϕ

(
Φ

ϕ
e−ϕ∆h − ϕ

Φ
eΦ∆h

)
. (SC.20)

Proposition SC.2.3 (Comparative statics – Operating firms). Both h and ∆h strictly

increase in σ2. There exists σ2 > 0 such that σ2 ≥ σ2 if and only if h = 0. Above it,

h = ∆h converge to π
ρ as σ2 →∞. h, h, ∆h converge to zero as either σ2 goes to zero

or π goes to zero. ∆h converges to zero as π goes to ∞. Last, there exists π > 0 such

that π ≤ π if and only if h = 0.

Proposition SC.2.4 (Breakeven re-inclusion – Operating firms). γ strictly increases

in σ2, strictly decreases in π, and diverges to ∞ as either σ2 goes to ∞ or π goes to

zero. It converges to zero as either σ2 goes to zero or π goes to ∞.

SC.3 Proofs for startup derivation

Proposition SC.1.1 (Comparative statics – Startups without re-inclusion).

Proof. Most results above are straightforward. For the first inequality in (SC.4), it is

sufficient to show that λΠ− κ− ρh(0) > 0, where h(θ) is h expressed as a function of

θ ∈ [0, 1].

To prove the claim, note that

λΠ− κ > ρh(0)

⇐⇒ exp

(
ρ+ λ

κ

λΠ− κ
ρ

)
> exp

(
ρ+ λ

κ
h(0)

)
=
λ

ρ

(
(ρ+ λ)

Π

κ
− 1

)
∵ (SC.3) with θ ≡ 0

= 1 +
ρ+ λ

κ

λΠ− κ
ρ

⇐⇒ ρ+ λ

κ

λΠ− κ
ρ

> 0,

which is equivalent to Assumption SC.1.1.

Proposition SC.1.2 (Startup financing).

Proof. If (SC.7) holds, then Inequality (SC.7) also holds with h defined by (SC.3).
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Therefore, h = 0. Now, consider the case where (SC.7) fails. Let us use Smooth

Pasting and Stationary Recursion to determine (h, h).

Smooth Pasting. For ease of notation, denote V o ≡ Vo(h) and V ≡ θ(V (h) − h +

h) + (1− θ)V o. The insiders’ non-excluded and excluded value functions for h ∈ [h, h]

are given by

V (h) =

∫ (h−h)/κ

0
λe−(ρ+λ)t

(
Π+ h− κt

)
dt+ e−

ρ+λ
κ

(h−h)V

=
λ

ρ+ λ

(
Π+ h− κ

ρ+ λ

)
−
(

λ

ρ+ λ

(
Π+ h− κ

ρ+ λ

)
− V

)
e−

ρ+λ
κ

(h−h),

Vo(h) = V (h)− e−
ρ+λ+γ

κ
(h−h)

(
V − V o

)
.

Vo(h) is derived based on the observation that, given the strategy of waiting on (h, h)

regardless of market access, the only difference that exclusion creates is that one has

V o instead of V at h = h if neither success nor re-inclusion occurs while the internal

funds h run down to h.

Note that

V (h) =
1

ρ+ λ

(
λ(Π + h)− κ

)
=⇒ ρκ

(ρ+ λ)2
=

(
λ

ρ+ λ

(
Π+ h− κ

ρ+ λ

)
− V

)
exp

(
−ρ+ λ

κ
(h− h)

)
=⇒ V (h) =

λ

ρ+ λ

(
Π+ h− κ

ρ+ λ

)
− ρκ

(ρ+ λ)2
exp

(
ρ+ λ

κ
(h− h)

)
, and

V − V o =
θ

1− θ

(
− ρ

ρ+ λ

(
h− h+

1

ρ+ λ
κ

)
+

ρκ

(ρ+ λ)2
exp

(
ρ+ λ

κ
(h− h)

))
.

Next, denote by Vd a payoff function on (h, h] for the deviation strategy of immediate

financing. That is, for h ∈ (h, h],

Vd(h) ≡ θ
(
V (h)− h+ h

)
+ (1− θ)Vo(h).

Smooth pasting condition is

V ′(h) = V ′
d(h) = θ + (1− θ)

(
V ′(h) +

ρ+ λ+ γ

κ
(V − V o)

)
,

which, after some algebra, is equivalent to Equation (SC.10).
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Stationary Recursion. This time, start by deriving Vo on [0, h], which satisfies:

ρVo(h) = γ
(
θ
(
V (h)− h+ h

)
+ (1− θ)Vo(h)− Vo(h)

)
+ λ

(
Π+ h− Vo(h)

)
− κV ′

o(h),

Vo(0) = 0

=⇒ Vo(h) =
1

ρ+ λ+ θγ

[
λΠ+ θγ

(
V (h)− h

)
− λ+ θγ

ρ+ λ+ θγ
κ+ (λ+ θγ)h

−
(
λΠ+ θγ

(
V (h)− h

)
− λ+ θγ

ρ+ λ+ θγ
κ

)
exp

(
−ρ+ λ+ θγ

κ
h

)]
.

Since ∆h ≡ h− h > 0 has been determined by Equation (SC.10), h is obtained by the

recursion:

V (h−∆h) = θ
(
V (h)−∆h

)
+ (1− θ)Vo(h−∆h).

Simplifying and substituting (SC.10) give Equation (SC.9).

Proposition SC.1.4 (Breakeven re-inclusion – Startups).

Proof. γ is defined by ηξ = h
∗
, where (h∗, h

∗
) is the equilibrium associated with γ = γ

and (η, ξ) given by Proposition SC.1.2. Since γ = γ implies h∗ = 0, Proposition SC.1.1,

in particular Equation (SC.5), holds with h replaced with ηξ. Note that

λ

ρ

1− θ

exp
(
ρ+λ
κ ηξ

)
− θ

=
∂(ηξ)

∂Π
= η

∂ξ

∂Π
+ ξ

∂η

∂Π
,

∂ξ

∂Π
=
λ

ρ

=⇒
∂η

∂Π
=

λ

λΠ− κ

 1− θ

exp
(
ρ+λ
κ ηξ

)
− θ
− 1− θ

1 + ρ+λ
γ − θ

 .

Since h
∗
= ηξ, smooth pasting holds at h∗ = 0. Therefore, from Equation (SC.10),

exp

(
ρ+ λ

κ
ηξ

)
= 1 +

ρ+ λ

γ

ρ+ λ+ γ

κ
ηξ.

Next, assume for now that ηξ = h
∗
> κ

ρ+λ+γ , which will be established at the end.

Then,

exp

(
ρ+ λ

κ
ηξ

)
> 1 +

ρ+ λ

γ
,

Thus, ∂η/∂Π < 0. Since η =
(1−θ)γ

ρ+λ+(1−θ)γ , we have ∂γ/∂Π < 0.

Next is the convergence claim. Since h
∗
satisfies Equation (SC.3), it goes to ∞ as

Π does. Note that ∆h∗ ≡ h
∗ − h∗ = h

∗
satisfies Equation (SC.10) with γ = γ. Since

ρ, λ, κ are fixed, the only way for the solution of Equation (SC.10) to be satisfied by a
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∆h that diverges to infinity is by having the linear coefficient on the LHS also diverge

to infinity. This can only be achieved if γ goes to zero, as claimed.

The divergence claim is straightforward from ηξ > κ
ρ+λ+γ . Since ξ = (λΠ − κ)/ρ

and η is in the unit interval, the LHS vanishes as Π goes down to κ/λ. Therefore, the

RHS also vanishes, i.e., γ →∞.

Finally, as for the intermediate claim on the strict lower bound on ηξ, first rearrange

the Smooth Pasting condition – i.e., Equation (SC.10) – into the following:

γ

ρ+ λ

(
exp

(
ρ+ λ

κ
∆h

)
− 1

)
=
ρ+ λ+ γ

κ
∆h.

Denote the LHS and RHS above as functions of ∆h. Note that LHS(0) = RHS(0) and

LHS′(0) < RHS′(0). Therefore, the LHS crosses the RHS only once and from below on

R++. Note that

LHS

(
κ

ρ+ λ+ γ

)
=

γ

ρ+ λ

(
exp

(
ρ+ λ

ρ+ λ+ γ

)
− 1

)
< 1 = RHS

(
κ

ρ+ λ+ γ

)
.

This holds for any set of parameters because, letting f(x) ≡ x
(
exp

(
1

1+x

)
− 1
)
, we

have

∀ x > 0, f ′(x) > 0, and lim
x→∞

f(x) = 1.

Therefore, LHS(∆h) < RHS(∆h) for any ∆h ∈ (0, κ
ρ+λ+γ ]. That is, if Smooth Pasting

holds at h, then it must be that ∆h = h−h > κ
ρ+λ+γ . Since γ = γ means that Smooth

Pasting holds at h∗ = 0, it must be that γξ = h
∗
= ∆h∗ > κ

ρ+λ+γ , as claimed.

SC.4 Proofs for operating firms derivations

Proposition SC.2.1 (Comparative statics – Operating firms without re-inclusion).

Proof. Most results are straightforward. As for the sign of ∂h/∂σ2, first write the

denominator of the second fraction as e−ϕhDN(h) where

DN(z) ≡
√
π2 + 2ρσ2

(
e(Φ+ϕ)z + 1− 2θeϕz

)
− π

(
e(Φ+ϕ)z − 1

)
.

Then, it is easily verified that DN(0) > 0, DN ′(z) > 0. Therefore, the denominator

is positive. Next, write the numerator as e−ϕhNM(h) where

NM(z) ≡ z
√
π2 + 2ρσ2

(
e(Φ+ϕ)z + 1

)
− σ2

(
e(Φ+ϕ)z − 1

)
.

Then, it is easily verified that NM(0) = NM ′(0) = NM ′′(0) = 0 < NM ′′′(z) for all

z ≥ 0. Therefore, for any positive z, NM is positive as well. Since h > 0, positivity is
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established.

Last, the limit of ∂h/∂σ2 as σ2 → 0 is established as follows. First, note that as

σ2 → 0,
Φ/ϕ

Φ+ ρ
→ π

ρ
,

ϕ/Φ

Φ+ ϕ
→ 0.

Since ϕ→ ρ/π and h→ 0, the first term on the right-hand side of (SC.13) goes to π/ρ.

Therefore,
ϕ/Φ

Φ+ ϕ
eΦh → (1− θ)π

ρ
> 0,

implying that eΦh → +∞. Since Φh =
(√

π2 + 2ρσ2 + π
)

h
σ2 , it follows that h/σ

2 →
+∞. Since h→ 0 as σ2 → 0, L’hospital’s rule establishes that

+∞ = lim
σ2→0

h

σ2
= lim

σ2

∂h/∂σ2

∂σ2/∂σ2
= lim

σ2→0

∂h

∂σ2
,

as claimed.

Proposition SC.2.2 (Operating firm financing).

Proof. First, Inequality (SC.18) is simply Inequality (SC.17) reformulated through

Equation (SC.13). Therefore, the equilibrium claim when h = 0 is straightforward.

Suppose now that Inequality (SC.18) fails.

Threshold Indifference. Vo on [0, h] satisfies

ρVo(h) = γθ

(
π

ρ
− h+ h− Vo(h)

)
+ πV ′

o(h) +
1

2
σ2V ′′

o (h),

Vo(0) = 0, Vo(h) =
π

ρ
−
(
1 +

ρ

(1− θ)γ

)
∆h ≡ V o

=⇒ Vo(h) =
θγ

ρ+ θγ

[(
1 +

ρ

ρ+ θγ

)
π

ρ
+ h− h

]
+

ρ

ρ+ θγ

[{
π

ρ+ θγ
− 1

1− θ

(
1 +

ρ

γ

)
∆h

+
θγ

ρ

((
1 +

ρ

ρ+ θγ

)
π

ρ
− h
)
e−Φoh

}
eϕoh − e−Φoh

eϕoh − e−Φoh

− θγ

ρ

((
1 +

ρ

ρ+ θγ

)
π

ρ
− h
)
e−Φoh

]
. (SC.21)

The boundary condition at h is given by Threshold Indifference (G(h) = 0).

Stationary Recursion. As h goes down to h from above, V on [h, h] must converge

to the financing value based on V o. Substituting h into Equation (SC.11), denoting

∆h ≡ h− h and equating it to θ
(
V (h)−∆h

)
+ (1− θ)V o give (SC.20).
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Smooth Pasting. On [0, h], V is characterized by immediate financing. Therefore,

for h ∈ [0, h],

V (h) = θ

(
π

ρ
− h+ h

)
+ (1− θ)Vo(h).

Its derivative at h = h = h−∆h, with Vo given by Equation (SC.21), must agree with

the derivative of Equation (SC.11) evaluated at the same point. Some algebra with

substituting (SC.20) gives (SC.19).

Proposition SC.2.3 (Comparative statics – Operating firms).

Proof. First, on σ2. A higher σ2 is less desirable due to forcing more frequent dilution;

hence, V (h)− h = π
ρ − h must be decreasing in σ2. Monotonicity of ∆h and existence

of σ2 are since

∂

∂σ2

[
1

Φ + ϕ

(
Φ

ϕ
e−ϕz − ϕ

Φ
eΦz
)]

< 0, lim
σ2→0

[
1

Φ + ϕ

(
Φ

ϕ
e−ϕz − ϕ

Φ
eΦz
)]

= −∞.

When σ2 > σ2, Proposition SC.2.1 applies. As σ2 → 0, the business becomes a constant

perpetuity stream. Hence, h→ 0 and so do ∆h, h since they add up to h.

Next, on π. Since V (h) − h = π
ρ − h ≥ 0, π → 0 implies h → 0. The existence of

π is immediate from that of σ2 since an equilibrium with (π, σ) is isomorphic to that

with (bπ, bσ) for any b > 0. As π →∞, the left- and right-hand sides of (SC.20) go to

+∞, −∞ with any fixed ∆h > 0. Therefore, ∆h→ 0.

Proposition SC.2.4 (Breakeven re-inclusion – Operating firms).

Proof. γ is defined by ηξ = h
∗
where (h∗, h

∗
) is the equilibrium associated with γ = γ

and (η, ξ) defined by Proposition SC.2.2. Since γ = γ implies h∗ = 0, Proposi-

tion SC.2.3, in particular Equation (SC.15), holds with h replaced with ηξ, that is,

∂ηξ/∂σ2 > 0. Since ∂η/∂γ > 0, ∂ξ/∂γ = 0, it follows that ∂γ/∂σ2 > 0. The limit

claims follow from the existence of σ2 for any γ in Proposition SC.2.3. The remaining

claims on π follow from the isomorphism stated in the proof of Proposition SC.2.3.
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